Advertisement

Endocrine

pp 1–15 | Cite as

Linking obesity-induced leptin-signaling pathways to common endocrine-related cancers in women

  • Eunice Nyasani
  • Iqbal Munir
  • Mia Perez
  • Kimberly Payne
  • Salma Khan
Review
  • 119 Downloads

Abstract

Obesity is related to many major diseases and cancers. Women have higher rates of obesity and obesity is linked to commonly occurring cancers in women. However, there is a lack of knowledge of the unique mechanism(s) involved in each type of cancer. The objective of this review is to highlight the need for novel experimental approaches and a better understanding of the common and unique pathways to resolve controversies regarding the role of obesity in cancer. In women, there is a link between hormones and obesity-associated genes in cancer development. Leptin is an obesity-associated gene that has been studied extensively in cancers; however, whether the defect is in the leptin gene or in its signaling pathways remains unclear. Both leptin and its receptor have been positively correlated with cancer progression in some endocrine-related cancers in women. This review offers an up-to-date and cohesive review of both upstream and downstream pathways of leptin signaling in cancer and a comprehensive picture of cancer pathogenesis in light of current evidence of leptin effects in several major types of cancer. This work is intended to aid in the design of better therapeutic strategies for obese/overweight women with cancer.

Keywords

Leptin Thyroid Ovary Breast cancer 

Notes

Acknowledgements

The authors would like to thank Dr. Alfred A. Simental, Chair of the Department of Otolaryngology, Dr. Marino De Leon, Director, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine (supported by National Institute of Health (NIH)-National Institute of Minority Health and Health Disparities under award numbers P20MD0016321 and P20MD006988) for financial support. We would like to thank our McPherson scholar Anna Kwon, Maya I. Townsend, and Krystal R. Santiago Torres for their technical assistance in preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization technical report series. 894, i−xii, 1−253 (2000).Google Scholar
  2. 2.
    A.G. Renehan, I. Soerjomataram, M. Tyson, M. Egger, M. Zwahlen, J.W. Coebergh, et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int. J. Cancer 126(3), 692–702 (2010).  https://doi.org/10.1002/ijc.24803 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M. Arnold, N. Pandeya, G. Byrnes, P.A.G. Renehan, G.A. Stevens, P.M. Ezzati, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 16(1), 36–46 (2015).  https://doi.org/10.1016/s1470-2045(14)71123-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    C.L. Ogden, T.H. Fakhouri, M.D. Carroll, C.M. Hales, C.D. Fryar, X. Li, et al. Prevalence of obesity among adults, by household income and education—United States, 2011−2014. Mmwr. Morb. Mortal. Wkly. Rep. 66(50), 1369–1373 (2017).  https://doi.org/10.15585/mmwr.mm6650a1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    S.M. Enger, R.K. Ross, A. Paganini-Hill, C.L. Carpenter, L. Bernstein, Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies. Cancer Epidemiol. Biomark. Prev. 9(7), 681–687 (2000).Google Scholar
  6. 6.
    Y. Kakugawa, H. Tada, M. Kawai, T. Suzuki, Y. Nishino, S. Kanemura, et al. Associations of obesity and physical activity with serum and intratumoral sex steroid hormone levels among postmenopausal women with breast cancer: analysis of paired serum and tumor tissue samples. Breast Cancer Res. Treat. 162(1), 115–125 (2017).  https://doi.org/10.1007/s10549-016-4094-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    R. Karim, F.Z. Stanczyk, R.D. Brinton, J. Rettberg, H.N. Hodis, W.J. Mack, Association of endogenous sex hormones with adipokines and ghrelin in postmenopausal women. J. Clin. Endocrinol. Metab. 100(2), 508–515 (2015).  https://doi.org/10.1210/jc.2014-1839-10.1210/jc.2014-2834 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    S. Karim, A. Merdad, H.J. Schulten, M. Jayapal, A. Dallol, A. Buhmeida, et al. Low expression of leptin and its association with breast cancer: a transcriptomic study. Oncol. Rep. 36(1), 43–48 (2016).  https://doi.org/10.3892/or.2016.4806 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    A. Mendez-Hernandez, M.P. Gallegos-Arreola, H. Moreno-Macias, J. Espinosa Fematt, R. Perez-Morales, LEP rs7799039, LEPR rs1137101, and ADIPOQ rs2241766 and 1501299 polymorphisms are associated with obesity and chemotherapy response in Mexican women with breast cancer. Clin. Breast Cancer 17(6), 453–462 (2017).  https://doi.org/10.1016/j.clbc.2017.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    R. Sultana, A.C. Kataki, B.B. Borthakur, T.K. Basumatary, S. Bose, Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene 621, 51–58 (2017).  https://doi.org/10.1016/j.gene.2017.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    C.M. Kitahara, B. Trabert, H.A. Katki, A.K. Chaturvedi, T.J. Kemp, L.A. Pinto, et al. Body mass index, physical activity, and serum markers of inflammation, immunity, and insulin resistance. Cancer Epidemiol., Biomark. Prev. 23(12), 2840–2849 (2014).  https://doi.org/10.1158/1055-9965.epi-14-0699-t CrossRefGoogle Scholar
  12. 12.
    E. Ur, A. Grossman, J.P. Despres, Obesity results as a consequence of glucocorticoid induced leptin resistance. Horm. Metab. Res.=Horm.- und Stoffwechs.=Horm. Et. Metab. 28(12), 744–747 (1996).  https://doi.org/10.1055/s-2007-979891 CrossRefGoogle Scholar
  13. 13.
    K. Selthofer-Relatić, R. Radić, A. Stupin, V. Šišljagić, I. Bošnjak, N. Bulj, et al. Leptin/adiponectin ratio in overweight patients—gender differences. Diab. Vasc. Dis. Res. 1479164117752491 (2018).  https://doi.org/10.1177/1479164117752491 CrossRefGoogle Scholar
  14. 14.
    Y.L. Fan, X.Q. Li, Expression of leptin and its receptor in thyroid carcinoma: distinctive prognostic significance in different subtypes. Clin. Endocrinol. 83(2), 261–267 (2015).  https://doi.org/10.1111/cen.12598 CrossRefGoogle Scholar
  15. 15.
    L.R. Carpenter, T.J. Farruggella, A. Symes, M.L. Karow, G.D. Yancopoulos, N. Stahl, Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA 95(11), 6061–6066 (1998)CrossRefPubMedCentralGoogle Scholar
  16. 16.
    C.L. Carpenter, K. Duvall, P. Jardack, L. Li, S.M. Henning, Z. Li, et al. Weight loss reduces breast ductal fluid estrogens in obese postmenopausal women: a single arm intervention pilot study. Nutr. J. 11, 102 (2012). https://doi.org/10.1186/1475-2891-11-102CrossRefPubMedCentralGoogle Scholar
  17. 17.
    C.L. Carpenter, A.M. Wong, Z. Li, E.P. Noble, D. Heber, Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity. Obesity 21(9), E467–E473 (2013).  https://doi.org/10.1002/oby.20202 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J.H. Choi, K.T. Lee, P.C. Leung, Estrogen receptor alpha pathway is involved in leptin-induced ovarian cancer cell growth. Carcinogenesis 32(4), 589–596 (2011).  https://doi.org/10.1093/carcin/bgq276 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    S. Basu, R. Nachat-Kappes, F. Caldefie-Chezet, M.P. Vasson, Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid. Redox Signal. 18(3), 323–360 (2015).  https://doi.org/10.1089/ars.2011.4408 CrossRefGoogle Scholar
  20. 20.
    J.A. Ligibel, C.T. Cirrincione, M. Liu, M. Citron, J.N. Ingle, W. Gradishar, et al. Body mass index, PAM50 subtype, and outcomes in node-positive breast cancer: CALGB 9741 (Alliance). J. Natl. Cancer Inst. 107(9), djv179 (2015).  https://doi.org/10.1093/jnci/djv179 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J.A. Ligibel, W.T. Barry, C. Alfano, D.L. Hershman, M. Irwin, M. Neuhouser, et al. Randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early breast cancer (Alliance A011401): study design. NPJ Breast Cancer 3, 37 (2017).  https://doi.org/10.1038/s41523-017-0040-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    J. White, D. Rehkopf, L.H. Mortensen, Trends in socioeconomic inequalities in body mass index, underweight and obesity among English children, 2007–2008 to 2011−2012. PLoS ONE 11(1), e0147614 (2016).  https://doi.org/10.1371/journal.pone.0147614 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    L.N. Liu, Y.C. Lin, C. Miaskowski, S.C. Chen, M.L. Chen, Association between changes in body fat and disease progression after breast cancer surgery is moderated by menopausal status. Bmc Cancer 17(1), 863 (2017).  https://doi.org/10.1186/s12885-017-3869-1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    S. Romero-Figueroa Mdel, J. Garduno-Garcia Jde, J. Duarte-Mote, G. Matute-Gonzalez, A. Gomez-Villanueva, J. De la Cruz-Vargas, Insulin and leptin levels in obese patients with and without breast cancer. Clin. Breast Cancer 13(6), 482–485 (2013).  https://doi.org/10.1016/j.clbc.2013.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    M.J. Gunter, T. Wang, M. Cushman, X. Xue, S. Wassertheil-Smoller, H.D. Strickler, et al. Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk. J. Natl. Cancer Inst. 107(9) (2015).  https://doi.org/10.1093/jnci/djv169
  26. 26.
    H. Shimizu, Y. Shimomura, Y. Nakanishi, T. Futawatari, K. Ohtani, N. Sato, et al. Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154(2), 285–292 (1997).CrossRefPubMedCentralGoogle Scholar
  27. 27.
    T. Khanal, H.G. Kim, M.T. Do, J.H. Choi, S.S. Won, W. Kang, et al. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERalpha pathway. Toxicol. Appl. Pharmacol. 277(1), 39–48 (2014).  https://doi.org/10.1016/j.taap.2014.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    M.H. Wu, Y.C. Chou, W.Y. Chou, G.C. Hsu, C.H. Chu, C.P. Yu, et al. Circulating levels of leptin, adiposity and breast cancer risk. Br. J. Cancer 100(4), 578–582 (2009).  https://doi.org/10.1038/sj.bjc.6604913 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    M.E. Grossmann, A. Ray, K.J. Nkhata, D.A. Malakhov, O.P. Rogozina, S. Dogan, et al. Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastas-. Rev. 29(4), 641–653 (2010).  https://doi.org/10.1007/s10555-010-9252-1 CrossRefGoogle Scholar
  30. 30.
    S.N. O’Brien, B.H. Welter, T.M. Price, Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259(3), 695–698 (1999).  https://doi.org/10.1006/bbrc.1999.0843 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    P. Stattin, S. Soderberg, C. Biessy, P. Lenner, G. Hallmans, R. Kaaks, et al. Plasma leptin and breast cancer risk: a prospective study in northern Sweden. Breast Cancer Res. Treat. 86(3), 191–196 (2004).  https://doi.org/10.1023/B:BREA.0000036782.11945.d7 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    J. Niu, L. Jiang, W. Guo, L. Shao, Y. Liu, L. Wang, The association between leptin level and breast cancer: a meta-analysis. PLoS ONE 8(6), e67349 (2013).  https://doi.org/10.1371/journal.pone.0067349 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    S.M. Al-Sh, N.M. Amjad, M.K. Al-Kubaisi, S. Mizan, Subcellular localization of leptin and leptin receptor in breast cancer detected in an electron microscopic study. Biochem. Biophys. Res. Commun. 482(4), 1102–1106 (2017).  https://doi.org/10.1016/j.bbrc.2016.11.165 CrossRefGoogle Scholar
  34. 34.
    V. Dubois, L. Delort, H. Billard, M.P. Vasson, F. Caldefie-Chezet, Breast cancer and obesity: in vitro interferences between adipokines and proangiogenic features and/or antitumor therapies?. PLoS ONE 8(3), e58541 (2013).  https://doi.org/10.1371/journal.pone.0058541 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    A.L. Strong, J.F. Ohlstein, B.A. Biagas, L.V. Rhodes, D.T. Pei, H.A. Tucker, et al. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 17, 112 (2015).  https://doi.org/10.1186/s13058-015-0622-z CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    B. Wolfson, G. Eades, Q. Zhou, Adipocyte activation of cancer stem cell signaling in breast cancer. World J. Biol. Chem. 6(2), 39–47 (2015).  https://doi.org/10.4331/wjbc.v6.i2.39 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    T. Imaoka, M. Nishimura, K. Daino, T. Morioka, Y. Nishimura, H. Uemura, et al. A rat model to study the effects of diet-induced obesity on radiation-induced mammary carcinogenesis. Radiat. Res. 185(5), 505–515 (2016).  https://doi.org/10.1667/rr14309.1 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    S. Nepal, M.J. Kim, J.T. Hong, S.H. Kim, D.H. Sohn, S.H. Lee, et al. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis. Oncotarget 6(9), 7166–7181 (2015).  https://doi.org/10.18632/oncotarget.3347 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    S. Catalano, S. Marsico, C. Giordano, L. Mauro, P. Rizza, M.L. Panno, et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278(31), 28668–28676 (2003).  https://doi.org/10.1074/jbc.M301695200 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    S. Catalano, L. Mauro, S. Marsico, C. Giordano, P. Rizza, V. Rago, et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J. Biol. Chem. 279(19), 19908–19915 (2004).  https://doi.org/10.1074/jbc.M313191200 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    S. Guo, M. Liu, G. Wang, M. Torroella-Kouri, R.R. Gonzalez-Perez, Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim. Biophys. Acta 1825(2), 207–222 (2012).  https://doi.org/10.1016/j.bbcan.2012.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    A. Spina, F. Di Maiolo, A. Esposito, L. Sapio, E. Chiosi, L. Sorvillo, et al. cAMP elevation down-regulates beta3 integrin and focal adhesion kinase and inhibits leptin-induced migration of MDA-MB-231 breast cancer cells. Biores. Open Access 1(6), 324–332 (2012).  https://doi.org/10.1089/biores.2012.0270 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    R. Rene Gonzalez, A. Watters, Y. Xu, U.P. Singh, D.R. Mann, B.R. Rueda et al.Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 11(3), R36 (2009).  https://doi.org/10.1186/bcr2321 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Y. Ding, Y. Cao, B. Wang, L. Wang, Y. Zhang, D. Zhang, et al. APPL1-Mediating leptin signaling contributes to proliferation and migration of cancer cells. PLoS ONE 11(11), e0166172 (2016).  https://doi.org/10.1371/journal.pone.0166172 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    S. Ando, S. Catalano, The multifactorial role of leptin in driving the breast cancer microenvironment. Nat. Rev. Endocrinol. 8(5), 263–275 (2011).  https://doi.org/10.1038/nrendo.2011.184 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    M. Hanna, I. Dumas, M. Orain, S. Jacob, B. Tetu, F. Sanschagrin, et al. Association between expression of inflammatory markers in normal breast tissue and mammographic density among premenopausal and postmenopausal women. Menopause 24(5), 524–535 (2017).  https://doi.org/10.1097/GME.0000000000000794 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    W. Zhou, S. Guo, R.R. Gonzalez-Perez, Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br. J. Cancer 104(1), 128–137 (2011).  https://doi.org/10.1038/sj.bjc.6606013 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    M. Hosney, S. Sabet, M. El-Shinawi, K.M. Gaafar, M.M. Mohamed, Leptin is overexpressed in the tumor microenvironment of obese patients with estrogen receptor positive breast cancer. Exp. Ther. Med. 13(5), 2235–2246 (2017).  https://doi.org/10.3892/etm.2017.4291 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    R. Fusco, M. Galgani, C. Procaccini, R. Franco, G. Pirozzi, L. Fucci, et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-{alpha} in breast cancer: molecular basis for a novel therapeutic setting. Endocr. Relat. Cancer 17(2), 373–382 (2010).  https://doi.org/10.1677/erc-09-0340 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Y. Qian, D. Shi, J. Qiu, F. Zhu, J. Qian, S. He, et al. ObRb downregulation increases cancer cell sensitivity to tamoxifen. Tumour Biol. 36(9), 6813–6821 (2015).  https://doi.org/10.1007/s13277-015-3375-5 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    C. Madeddu, G. Gramignano, C. Floris, G. Murenu, G. Sollai, A. Maccio, Role of inflammation and oxidative stress in post-menopausal oestrogen-dependent breast cancer. J. Cell. Mol. Med. 18(12), 2519–2529 (2014).  https://doi.org/10.1111/jcmm.12413 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    S. Swami, A.V. Krishnan, J. Williams, A. Aggarwal, M.A. Albertelli, R.L. Horst, et al. Vitamin D mitigates the adverse effects of obesity on breast cancer in mice. Endocr. Relat. Cancer 23(4), 251–264 (2016).  https://doi.org/10.1530/erc-15-0557 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    J.D. Williams, A. Aggarwal, S. Swami, A.V. Krishnan, L. Ji, M.A. Albertelli, et al. Tumor autonomous effects of vitamin D deficiency promote breast cancer metastasis. Endocrinology 157(4), 1341–1347 (2016).  https://doi.org/10.1210/en.2015-2036 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    A.K. Mishra, C.R. Parish, M.L. Wong, J. Licinio, A.C. Blackburn, Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS ONE 12(5), e0178454 (2017).  https://doi.org/10.1371/journal.pone.0178454 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    L. Bougaret, L. Delort, H. Billard, C. Lequeux, N. Goncalves-Mendes, A. Mojallal, et al. Supernatants of adipocytes from obese versus normal weight women and breast cancer cells: in vitro impact on angiogenesis. J. Cell. Physiol. 232(7), 1808–1816 (2017).  https://doi.org/10.1002/jcp.25701 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    L. Bougaret, L. Delort, H. Billard, C. Le Huede, C. Boby, A. De la Foye, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen. PLoS ONE 13(2), e0191571 (2018).  https://doi.org/10.1371/journal.pone.0191571 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    G.D. Stephenson, D.P. Rose, Breast cancer and obesity: an update. Nutr. Cancer 45(1), 1–16 (2003).  https://doi.org/10.1207/s15327914nc4501_1 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    J. Incio, J.A. Ligibel, D.T. McManus, P. Suboj, K. Jung, K. Kawaguchi, et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci. Transl. Med. 10(432) (2018).  https://doi.org/10.1126/scitranslmed.aag0945 CrossRefPubMedCentralGoogle Scholar
  59. 59.
    C.O. Erondu, A.J. Alberg, E.V. Bandera, J. Barnholtz-Sloan, M. Bondy, M.L. Cote et al.The association between body mass index and presenting symptoms in African American women with ovarian cancer. J. Women’s Health 25(6), 571–578 (2016).  https://doi.org/10.1089/jwh.2015.5359 CrossRefGoogle Scholar
  60. 60.
    H. Cramer, M.S. Thoms, D. Anheyer, R. Lauche, G. Dobos, Yoga in women with abdominal obesity randomized controlled trial. Dtsch. Arztebl. Int. 113(39), 645–652 (2016).  https://doi.org/10.3238/arztebl.2016.0645 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    M.M. Vysotskii, M.A. Digaeva, N.E. Kushlinskii, S.G. Abbasova, K.P. Laktionov, V.D. Ermilova, et al. Serum sFas, leptin, and VEGF in patients with ovarian cancer and benign tumors. Bull. Exp. Biol. Med. 148(5), 810–814 (2009)CrossRefPubMedCentralGoogle Scholar
  62. 62.
    L.F. Mendez-Lopez, M.I. Davila-Rodriguez, A. Zavala-Pompa, E. Torres-Lopez, B.E. Gonzalez-Martinez, M. Lopez-Cabanillas-Lomeli, Expression of leptin receptor in endometrial biopsies of endometrial and ovarian cancer patients. Biomed. Rep. 1(4), 659–663 (2013).  https://doi.org/10.3892/br.2013.125 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    E.S. Diaz, B.Y. Karlan, A.J. Li, Obesity-associated adipokines correlate with survival in epithelial ovarian cancer. Gynecol. Oncol. 129(2), 353–357 (2013).  https://doi.org/10.1016/j.ygyno.2013.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    R.E. Schmandt, D.A. Iglesias, N.N. Co, K.H. Lu, Understanding obesity and endometrial cancer risk: opportunities for prevention. Am. J. Obstet. Gynecol. 205(6), 518–525 (2011).  https://doi.org/10.1016/j.ajog.2011.05.042 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Z. Shen, H. Luo, S. Li, B. Sheng, M. Zhao, H. Zhu, et al. Correlation between estrogen receptor expression and prognosis in epithelial ovarian cancer: a meta-analysis. Oncotarget 8(37), 62400–62413 (2017).  https://doi.org/10.18632/oncotarget.18253 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    M.M. Protani, C.M. Nagle, P.M. Webb, Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prev. Res. 5(7), 901–910 (2012).  https://doi.org/10.1158/1940-6207.capr-12-0048 CrossRefGoogle Scholar
  67. 67.
    Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med. 9(4):e1001200 (2012).  https://doi.org/10.1371/journal.pmed.1001200
  68. 68.
    M. Hoffmann, E. Fiedor, A. Ptak, 17beta-estradiol reverses leptin-inducing ovarian cancer cell migration by the PI3K/Akt signaling pathway. Reprod. Sci. 23(11), 1600–1608 (2016).  https://doi.org/10.1177/1933719116648214 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    A. Ptak, A. Rak-Mardyla, E.L. Gregoraszczuk, Cooperation of bisphenol A and leptin in inhibition of caspase-3 expression and activity in OVCAR-3 ovarian cancer cells. Toxicol. Vitr. 27(6), 1937–1943 (2013).  https://doi.org/10.1016/j.tiv.2013.06.017 CrossRefGoogle Scholar
  70. 70.
    A. Ghasemi, S.I. Hashemy, M. Aghaei, M. Panjehpour, Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways. J. Cell. Biochem. 119(2), 2333–2344 (2018).  https://doi.org/10.1002/jcb.26396 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    A. Ghasemi, S.I. Hashemy, M. Aghaei, M. Panjehpour, RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells. Cell. Signal. 32, 104–114 (2017).  https://doi.org/10.1016/j.cellsig.2017.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    E. Fiedor, E.L. Gregoraszczuk, The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother. Pharmacol. 78(3), 611–622 (2016).  https://doi.org/10.1007/s00280-016-3113-8 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    M. Cuello-Fredes, S. Kato, L. Abarzua-Catalan, A. Delpiano, C. Trigo, K. Garcia, et al. Leptin promotes a more aggresive behavior of ovarian cancer cells: a potential explanation for a worse prognosis in obese ovarian cancer patients: IGCS ovarian cancer. Int. J. Gynecol. Cancer 25(Suppl 1), 67 (2015)CrossRefPubMedCentralGoogle Scholar
  74. 74.
    S. Kato, L. Abarzua-Catalan, C. Trigo, A. Delpiano, C. Sanhueza, K. Garcia, et al. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget 6(25), 21100–21119 (2015).  https://doi.org/10.18632/oncotarget.4228 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    X. Wei, Y. Liu, C. Gong, T. Ji, X. Zhou, T. Zhang, et al. Targeting leptin as a therapeutic strategy against ovarian cancer peritoneal metastasis. Anticancer Agents Med. Chem. 17(8), 1093–1101 (2017).  https://doi.org/10.2174/1871520616666161221114454 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    C. Chen, Y.C. Chang, M.S. Lan, M. Breslin, Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by increasing cyclin D1 and Mcl-1 expression via the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways. Int. J. Oncol. 42(3), 1113–1119 (2013).  https://doi.org/10.3892/ijo.2013.1789 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    S. Uddin, R. Bu, M. Ahmed, J. Abubaker, F. Al-Dayel, P. Bavi, et al. Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Mol. Cancer 8, 74 (2009).  https://doi.org/10.1186/1476-4598-8-74 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    J. Kumar, H. Fang, D.R. McCulloch, T. Crowley, A.C. Ward, Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget 8(55), 93530–93540 (2017).  https://doi.org/10.18632/oncotarget.19873 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    J.H. Choi, S.H. Park, P.C. Leung, K.C. Choi, Expression of leptin receptors and potential effects of leptin on the cell growth and activation of mitogen-activated protein kinases in ovarian cancer cells. J. Clin. Endocrinol. Metab. 90(1), 207–210 (2005).  https://doi.org/10.1210/jc.2004-0297 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    M.A. Onstad, R.E. Schmandt, K.H. Lu, Addressing the role of obesity in endometrial cancer risk, prevention, and treatment. J. Clin. Oncol. 34(35), 4225–4230 (2016).  https://doi.org/10.1200/jco.2016.69.4638 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    E.E. Calle, R. Kaaks, Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4(8), 579–591 (2004).  https://doi.org/10.1038/nrc1408 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    E.E. Calle, C. Rodriguez, K. Walker-Thurmond, M.J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Eng. J. Med. 348(17), 1625–1638 (2003).  https://doi.org/10.1056/NEJMoa021423 CrossRefGoogle Scholar
  83. 83.
    G.K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, D. Bull, Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ (Clin. Res. Ed.). 335(7630), 1134 (2007).  https://doi.org/10.1136/bmj.39367.495995.AE CrossRefGoogle Scholar
  84. 84.
    K.K. Mauland, O. Eng, S. Ytre-Hauge, I.L. Tangen, A. Berg, H.B. Salvesen, et al. High visceral fat percentage is associated with poor outcome in endometrial cancer. Oncotarget 8(62), 105184–105195 (2017).  https://doi.org/10.18632/oncotarget.21917 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    J.V. Bokhman, Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 15(1), 10–17 (1983)CrossRefPubMedCentralGoogle Scholar
  86. 86.
    K. Munstedt, M. Wagner, U. Kullmer, A. Hackethal, F.E. Franke, Influence of body mass index on prognosis in gynecological malignancies. Cancer Causes Control 19(9), 909–916 (2008).  https://doi.org/10.1007/s10552-008-9152-7 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    B. Anderson, J.P. Connor, J.I. Andrews, C.S. Davis, R.E. Buller, J.I. Sorosky, et al. Obesity and prognosis in endometrial cancer. Am. J. Obstet. Gynecol. 174(4), 1171–1178 (1996). discussion 8−9CrossRefPubMedCentralGoogle Scholar
  88. 88.
    E.J. Crosbie, C. Roberts, W. Qian, A.M. Swart, H.C. Kitchener, A.G. Renehan, Body mass index does not influence post-treatment survival in early stage endometrial cancer: results from the MRC ASTEC trial. Eur. J. Cancer 48(6), 853–864 (2012).  https://doi.org/10.1016/j.ejca.2011.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    K.K. Mauland, J. Trovik, E. Wik, M.B. Raeder, T.S. Njolstad, I.M. Stefansson, et al. High BMI is significantly associated with positive progesterone receptor status and clinico-pathological markers for non-aggressive disease in endometrial cancer. Br. J. Cancer 104(6), 921–926 (2011).  https://doi.org/10.1038/bjc.2011.46 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    V.E. von Gruenigen, C. Tian, H. Frasure, S. Waggoner, H. Keys, R.R. Barakat, Treatment effects, disease recurrence, and survival in obese women with early endometrial carcinoma: a Gynecologic Oncology Group study. Cancer 107(12), 2786–2791 (2006).  https://doi.org/10.1002/cncr.22351 CrossRefGoogle Scholar
  91. 91.
    C. Kandoth, N. Schultz, A.D. Cherniack, R. Akbani, Y. Liu, H. Shen, et al. Integrated genomic characterization of endometrial carcinoma. Nature 497(7447), 67–73 (2013).  https://doi.org/10.1038/nature12113 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    D. Kong, A. Suzuki, T.T. Zou, A. Sakurada, L.W. Kemp, S. Wakatsuki, et al. PTEN1 is frequently mutated in primary endometrial carcinomas. Nat. Genet. 17(2), 143–144 (1997).  https://doi.org/10.1038/ng1097-143 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    J.I. Risinger, A.K. Hayes, A. Berchuck, J.C. Barrett, PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 57(21), 4736–4738 (1997)PubMedPubMedCentralGoogle Scholar
  94. 94.
    H. Tashiro, M.S. Blazes, R. Wu, K.R. Cho, S. Bose, S.I. Wang, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 57(18), 3935–3940 (1997)PubMedPubMedCentralGoogle Scholar
  95. 95.
    J.E. Fata, S. Debnath, E.C. Jenkins Jr, M.V. Fournier, Nongenomic mechanisms of PTEN regulation. Int. J. Cell Biol. 2012, 379685 (2012).  https://doi.org/10.1155/2012/379685 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    L.W. Cheung, B.T. Hennessy, J. Li, S. Yu, A.P. Myers, B. Djordjevic, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1(2), 170–185 (2011).  https://doi.org/10.1158/2159-8290.cd-11-0039 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    M.L. Rudd, J.C. Price, S. Fogoros, A.K. Godwin, D.C. Sgroi, M.J. Merino, et al. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin. Cancer Res. 17(6), 1331–1340 (2011).  https://doi.org/10.1158/1078-0432.ccr-10-0540 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    M.E. Urick, M.L. Rudd, A.K. Godwin, D. Sgroi, M. Merino, D.W. Bell, PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 71(12), 4061–4067 (2011).  https://doi.org/10.1158/0008-5472.can-11-0549 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    A. Dellas, G. Jundt, G. Sartorius, M. Schneider, H. Moch, Combined PTEN and p27kip1 protein expression patterns are associated with obesity and prognosis in endometrial carcinomas. Clin. Cancer Res. 15(7), 2456–2462 (2009).  https://doi.org/10.1158/1078-0432.ccr-08-1732 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    K.K. Mauland, Z. Ju, I.L. Tangen, A. Berg, K.H. Kalland, A.M. Oyan, et al. Proteomic profiling of endometrioid endometrial cancer reveals differential expression of hormone receptors and MAPK signaling proteins in obese versus non-obese patients. Oncotarget 8(63), 106989–107001 (2017).  https://doi.org/10.18632/oncotarget.22203 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    C.M. Dallal, L.A. Brinton, D.C. Bauer, D.S. Buist, J.A. Cauley, T.F. Hue, et al. Obesity-related hormones and endometrial cancer among postmenopausal women: a nested case-control study within the B~FIT cohort. Endocr. Relat. Cancer 20(1), 151–160 (2013).  https://doi.org/10.1530/erc-12-0229 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    E.L. Busch, M. Crous-Bou, J. Prescott, M.J. Downing, B.A. Rosner, G.L. Mutter, et al. Adiponectin, leptin, and insulin-pathway receptors as endometrial cancer subtyping markers. Horm. Cancer 9(1), 33–39 (2018).  https://doi.org/10.1007/s12672-017-0318-1 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    S.S. Sahoo, J.M. Lombard, Y. Ius, R. O’Sullivan, L.G. Wood, P. Nahar, et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol. Cancer Res. 16(2), 309–321 (2018).  https://doi.org/10.1158/1541-7786.Mcr-17-0466 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    J.P. Sahoo, S. Kumari, S. Jain, Effect of gender on the total abdominal fat, intra-abdominal adipose tissue and abdominal sub-cutaneous adipose tissue among Indian hypertensive patients. J. Clin. Diagn. Res. 10(4), OM01–OM03 (2016).  https://doi.org/10.7860/JCDR/2016/17594.7601 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Y. Liu, L.L. Wang, S. Chen, Z.H. Zong, X. Guan, Y. Zhao. LncRNA ABHD11-AS1 promotes the dYevelopment of endometrial carcinoma by targeting cyclin D1. J. Cell. Mol. Med. (2018).  https://doi.org/10.1111/jcmm.13675 CrossRefGoogle Scholar
  106. 106.
    S. Chen, L.L. Wang, K.X. Sun, Y. Liu, X. Guan, Z.H. Zong, et al. LncRNA TDRG1 enhances tumorigenicity in endometrial carcinoma by binding and targeting VEGF-A protein. Biochim. Biophys. Acta (2018).  https://doi.org/10.1016/j.bbadis.2018.06.013 CrossRefGoogle Scholar
  107. 107.
    S.N. Westin, Z. Ju, R.R. Broaddus, C. Krakstad, J. Li, N. Pal, et al. PTEN loss is a context-dependent outcome determinant in obese and non-obese endometrioid endometrial cancer patients. Mol. Oncol. 9(8), 1694–1703 (2015).  https://doi.org/10.1016/j.molonc.2015.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    A. Papa, E. Zaccarelli, D. Caruso, P. Vici, P. Benedetti Panici, F. Tomao, Targeting angiogenesis in endometrial cancer—new agents for tailored treatments. Expert. Opin. Investig. Drugs 25(1), 31–49 (2016).  https://doi.org/10.1517/13543784.2016.1116517 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    O. Aslan, M. Cremona, C. Morgan, L.W. Cheung, G.B. Mills, B.T. Hennessy, Preclinical evaluation and reverse phase protein Array-based profiling of PI3K and MEK inhibitors in endometrial carcinoma in vitro. Bmc. Cancer 18(1), 168 (2018).  https://doi.org/10.1186/s12885-018-4035-0 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    M. Nickkho-Amiry, R. McVey, C. Holland, Peroxisome proliferator-activated receptors modulate proliferation and angiogenesis in human endometrial carcinoma. Mol. Cancer Res. 10(3), 441–453 (2012).  https://doi.org/10.1158/1541-7786.Mcr-11-0233 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    M. Sinreih, S. Stupar, L. Cemazar, I. Verdenik, S. Frkovic Grazio, S. Smrkolj, et al. STAR and AKR1B10 are down-regulated in high-grade endometrial cancer. J. Steroid Biochem. Mol. Biol. 171, 43–53 (2017).  https://doi.org/10.1016/j.jsbmb.2017.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    F. Linkov, G.L. Maxwell, A.S. Felix, Y. Lin, D. Lenzner, D.H. Bovbjerg, et al. Longitudinal evaluation of cancer-associated biomarkers before and after weight loss in RENEW study participants: Implications for cancer risk reduction. Gynecol. Oncol. 125(1), 114–119 (2012).  https://doi.org/10.1016/j.ygyno.2011.12.439 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    L. Xu, M. Port, S. Landi, F. Gemignani, M. Cipollini, R. Elisei, et al. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies. Thyroid. 24(6), 966–974 (2014).  https://doi.org/10.1089/thy.2013.0566 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    T. Pappa, M. Alevizaki, Obesity and thyroid cancer: a clinical update. Thyroid 24(2), 190–199 (2014).  https://doi.org/10.1089/thy.2013.0232 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    B. Oberman, A. Khaku, F. Camacho, D. Goldenberg, Relationship between obesity, diabetes and the risk of thyroid cancer. Am. J. Otolaryngol. 36(4), 535–541 (2015).  https://doi.org/10.1016/j.amjoto.2015.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    J.M. Han, T.Y. Kim, M.J. Jeon, J.H. Yim, W.G. Kim, D.E. Song, et al. Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur. J. Endocrinol. 168(6), 879–886 (2013).  https://doi.org/10.1530/eje-13-0065 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    M.A. Marcello, L.L. Cunha, F.A. Batista, L.S. Ward, Obesity and thyroid cancer. Endocr. Relat. Cancer 21(5), T255–T271 (2014).  https://doi.org/10.1530/erc-14-0070 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Y. Hwang, K.E. Lee, Y.J. Park, S.J. Kim, H. Kwon, D.J. Park, et al. Annual Average changes in adult obesity as a risk factor for papillary thyroid cancer: a large-scale case-control study. Medicine 95(9), e2893 (2016).  https://doi.org/10.1097/md.0000000000002893 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    G. Grani, L. Lamartina, T. Montesano, G. G. Ronga, V. Maggisano, R. Falcone, et al. Lack of association between obesity and aggressiveness of differentiated thyroid cancer. J. Endocrinol. Investig. (2018).  https://doi.org/10.1007/s40618-018-0889-x
  120. 120.
    C. Wu, L. Wang, W. Chen, S. Zou, A. Yang, Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: a retrospective study. Medicine 96(9), e6202 (2017).  https://doi.org/10.1097/MD.0000000000006202 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    L. Dossus, S. Franceschi, C. Biessy, A.S. Navionis, R. C.Travis, E. Weiderpass, et al. Adipokines and inflammation markers and risk of differentiated thyroid carcinoma: the EPIC study. Int. J. Cancer (2017).  https://doi.org/10.1002/ijc.31172 CrossRefPubMedCentralGoogle Scholar
  122. 122.
    C.L. Meinhold, E. Ron, S.J. Schonfeld, B.H. Alexander, D.M. Freedman, M.S. Linet, et al. Nonradiation risk factors for thyroid cancer in the US Radiologic Technologists Study. Am. J. Epidemiol. 171(2), 242–252 (2010).  https://doi.org/10.1093/aje/kwp354 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    M. Almquist, D. Johansen, T. Bjorge, H. Ulmer, B. Lindkvist, T. Stocks, et al. Metabolic factors and risk of thyroid cancer in the Metabolic syndrome and Cancer project (Me-Can). Cancer Causes Control 22(5), 743–751 (2011).  https://doi.org/10.1007/s10552-011-9747-2 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Y. Liu, L. Su, H. Xiao, Review of factors related to the thyroid cancer epidemic. Int. Endocrinol. 2017, 5308635 (2017).  https://doi.org/10.1155/2017/5308635 CrossRefGoogle Scholar
  125. 125.
    C.M. Kitahara, M.L. McCullough, S. Franceschi, S. Rinaldi, A. Wolk, G. Neta, et al. Anthropometric factors and thyroid cancer risk by histological subtype: pooled analysis of 22 prospective studies. Thyroid 26(2), 306–318 (2016).  https://doi.org/10.1089/thy.2015.0319 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    A. Engeland, S. Tretli, L.A. Akslen, T. Bjorge, Body size and thyroid cancer in two million Norwegian men and women. Br. J. Cancer 95(3), 366–370 (2006).  https://doi.org/10.1038/sj.bjc.6603249 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    L. Dal Maso, C. La Vecchia, S. Franceschi, S. Preston-Martin, E. Ron, F. Levi et al. A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control 11(2), 137–144 (2000)CrossRefPubMedCentralGoogle Scholar
  128. 128.
    M. Akinci, F. Kosova, B. Cetin, S. Aslan, Z. Ari, A. Cetin, Leptin levels in thyroid cancer. Asian J. Surg. 32(4), 216–223 (2009).  https://doi.org/10.1016/s1015-9584(09)60397-3 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    M. Hedayati, P. Yaghmaei, Z. Pooyamanesh, M. Zarif Yeganeh, L. Hoghooghi Rad, Leptin: a correlated peptide to papillary thyroid carcinoma?. J. Thyroid Res. 2011, 832163 (2011).  https://doi.org/10.4061/2011/832163 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    T.E. Abdel-Aziz, R.A. Rehem, W.A. Elwafa, Serum leptin levels and well-differentiated thyroid cancer: a true association: Reply. World J. Surg. 39(9), 2367 (2015).  https://doi.org/10.1007/s00268-015-3120-7 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    R.A. Rehem, W.A. Elwafa, R.A. Elwafa, T.E. Abdel-Aziz, Study of serum leptin in well-differentiated thyroid carcinoma: correlation with patient and tumor characteristics. World J. Surg. 38(10), 2621–2627 (2014).  https://doi.org/10.1007/s00268-014-2634-8 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    G.-A. Zhang, S.E.N. Hou, S.H.A. Han, J. Zhou, X.U. Wang, W.E.N. Cui, Clinicopathological implications of leptin and leptin receptor expression in papillary thyroid cancer. Oncol. Lett. 5(3), 797–800 (2013).  https://doi.org/10.3892/ol.2013.1125 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    S.P. Cheng, P.H. Yin, Y.C. Chang, C.H. Lee, S.Y. Huang, C.W. Chi, Differential roles of leptin in regulating cell migration in thyroid cancer cells. Oncol. Rep. 23(6), 1721–1727 (2010)PubMedPubMedCentralGoogle Scholar
  134. 134.
    S.P. Cheng, C.L. Liu, Y.C. Hsu, Y.C. Chang, S.Y. Huang, J.J. Lee, Expression and biologic significance of adiponectin receptors in papillary thyroid carcinoma. Cell Biochem. Biophys. 65(2), 203–210 (2013).  https://doi.org/10.1007/s12013-012-9419-1 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    A.M. Wallace, A.D. McMahon, C.J. Packard, A. Kelly, J. Shepherd, A. Gaw et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 104(25), 3052–3056 (2001)CrossRefPubMedCentralGoogle Scholar
  136. 136.
    J.W. Park, C.R. Han, L. Zhao, M.C. Willingham, S.Y. Cheng, Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr. Relat. Cancer 23(1), 53–63 (2016).  https://doi.org/10.1530/erc-15-0417 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    S. Uddin, P. Bavi, A.K. Siraj, M. Ahmed, M. Al-Rasheed, A.R. Hussain et al. Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr. Relat. Cancer 17(1), 191–202 (2010).  https://doi.org/10.1677/erc-09-0153 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    W.G. Kim, H.J. Choi, W.B. Kim, E.Y. Kim, J.H. Yim, T.Y. Kim et al. Basal STAT3 activities are negatively correlated with tumor size in papillary thyroid carcinomas. J. Endocrinol. Invest. 35(4), 413–418 (2012).  https://doi.org/10.3275/7907 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    J.P. Couto, L. Daly, A. Almeida, J.A. Knauf, J.A. Fagin, M. Sobrinho-Simoes, et al. STAT3 negatively regulates thyroid tumorigenesis. Proc. Natl. Acad. Sci. USA. 109(35), E2361−E2370 (2012).  https://doi.org/10.1073/pnas.1201232109 CrossRefGoogle Scholar
  140. 140.
    S. Clement, S. Refetoff, B. Robaye, J.E. Dumont, S. Schurmans, Low TSH requirement and goiter in transgenic mice overexpressing IGF-I and IGF-Ir receptor in the thyroid gland. Endocrinology 142(12), 5131–5139 (2001).  https://doi.org/10.1210/endo.142.12.8534 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Y.C. Yang, Y.T. Chin, M.T. Hsieh, H.Y. Lai, C.C. Ke, D.R. Crawford et al. Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin. Oncotarget 7(19), 27641–27654 (2016).  https://doi.org/10.18632/oncotarget.8505.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    W.G. Kim, J.W. Park, M.C. Willingham, S.Y. Cheng, Diet-induced obesity increases tumor growth and promotes anaplastic change in thyroid cancer in a mouse model. Endocrinology 154(8), 2936–2947 (2013).  https://doi.org/10.1210/en.2013-1128 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Y. Huang, W. Dong, J. Li, H. Zhang, Z. Shan, W. Teng, Differential expression patterns and clinical significance of estrogen receptor-α and β in papillary thyroid carcinoma. Bmc. Cancer 14, 383 (2014).  https://doi.org/10.1186/1471-2407-14-383 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    J.I. Botella-Carretero, F. Alvarez-Blasco, J. Sancho, H.F. Escobar-Morreale, Effects of thyroid hormones on serum levels of adipokines as studied in patients with differentiated thyroid carcinoma during thyroxine withdrawal. Thyroid. 16(4), 397–402 (2006).  https://doi.org/10.1089/thy.2006.16.397 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    V.G. Antico Arciuch, M.A. Russo, K.S. Kang, A. Di Cristofano, Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells. Cancer Res. 73(17), 5459–5472 (2013).  https://doi.org/10.1158/0008-5472.can-13-1429 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    T. Jardé, S. Perrier, M.-P. Vasson, F. Caldefie-Chézet, Molecular mechanisms of leptin and adiponectin in breast cancer. Eur. J. Cancer 47(1), 33–43 (2011).  https://doi.org/10.1016/j.ejca.2010.09.005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Health Disparities & Molecular MedicineLoma LindaUSA
  2. 2.Riverside University Health SystemMoreno ValleyUSA
  3. 3.Department of Pathology & Human AnatomyLoma LindaUSA
  4. 4.Division of BiochemistryLoma Linda UniversityLoma LindaUSA

Personalised recommendations