Skip to main content
Log in

Oral glucose load and mixed meal feeding lowers testosterone levels in healthy eugonadal men

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Precise evaluation of serum testosterone levels is important in making an accurate diagnosis of androgen deficiency. Recent practice guidelines on male androgen deficiency recommend that testosterone be measured in the morning while fasting. Although there is ample evidence regarding morning measurement of testosterone, studies that evaluated the effect of glucose load or meals were limited by inclusion of hypogonadal or diabetic men, and measurement of testosterone was not performed using mass spectrometry.

Methods

Sixty men (23–97 years) without pre-diabetes or diabetes who had normal total testosterone (TT) levels underwent either an oral glucose tolerance test (OGTT) or a mixed meal tolerance test (MMTT) after an overnight fast. Serum samples were collected before and at regular intervals for 2 h (OGTT cohort) or 3 h (MMTT cohort). TT was measured by LC-MS/MS. LH and prolactin were also measured.

Results

TT decreased after a glucose load (mean drop at nadir = 100 ng/dL) and after a mixed meal (drop at nadir = 123 ng/dL). Approximately 11% of men undergoing OGTT and 56% undergoing MMTT experienced a transient decrease in TT below 300 ng/dL, the lower normal limit. Testosterone started declining 20 min into the tests, with average maximum decline at 60 min. Most men still had TT lower than baseline at 120 min. This effect was independent of changes in LH or prolactin.

Conclusion

A glucose load or a mixed meal transiently, but significantly, lowers TT levels in healthy, non-diabetic eugonadal men. These findings support the recommendations that measurement of serum testosterone to diagnose androgen deficiency should be performed while fasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Bhasin, J.P. Brito, G.R. Cunningham, F.J. Hayes, H.N. Hodis, A.M. Matsumoto, P.J. Snyder, R.S. Swerdloff, F.C. Wu, M.A. Yialamas, Testosterone therapy in men with hypogonadism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 103(5), 1715–1744 (2018). https://doi.org/10.1210/jc.2018-00229

    Article  PubMed  Google Scholar 

  2. L. Wartofsky, D.J. Handelsman, Standardization of hormonal assays for the 21st century. J. Clin. Endocrinol. Metab. 95(12), 5141–5143 (2010). https://doi.org/10.1210/jc.2010-2369

    Article  CAS  PubMed  Google Scholar 

  3. W.J. Bremner, M.V. Vitiello, P.N. Prinz, Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J. Clin. Endocrinol. Metab. 56(6), 1278–1281 (1983). https://doi.org/10.1210/jcem-56-6-1278

    Article  CAS  PubMed  Google Scholar 

  4. D.J. Brambilla, A.B. O’Donnell, A.M. Matsumoto, J.B. McKinlay, Intraindividual variation in levels of serum testosterone and other reproductive and adrenal hormones in men. Clin. Endocrinol. 67(6), 853–862 (2007). https://doi.org/10.1111/j.1365-2265.2007.02976.x

    Article  CAS  Google Scholar 

  5. A.W. Meikle, J.D. Stringham, M.G. Woodward, M.P. McMurry, Effects of a fat-containing meal on sex hormones in men. Metab.: Clin. Exp. 39(9), 943–946 (1990)

    Article  CAS  Google Scholar 

  6. A. Jeibmann, S. Zahedi, M. Simoni, E. Nieschlag, M.M. Byrne, Glucagon-like peptide-1 reduces the pulsatile component of testosterone secretion in healthy males. Eur. J. Clin. Investig. 35(9), 565–572 (2005). https://doi.org/10.1111/j.1365-2362.2005.01542.x

    Article  CAS  Google Scholar 

  7. J.R. Wall, R.J. Jarrett, P.Z. Zimmet, M. Bailes, C.M. Ramage, Fall in plasma-testosterone levels in normal male subjects in response to an oral glucose load. Lancet 1(7810), 967–968 (1973)

    Article  CAS  PubMed  Google Scholar 

  8. M. Lehtihet, S. Arver, I. Bartuseviciene, A. Pousette, S-testosterone decrease after a mixed meal in healthy men independent of SHBG and gonadotrophin levels. Andrologia 44(6), 405–410 (2012). https://doi.org/10.1111/j.1439-0272.2012.01296.x

    Article  CAS  PubMed  Google Scholar 

  9. R.C. Habito, M.J. Ball, Postprandial changes in sex hormones after meals of different composition. Metab.: Clin. Exp. 50(5), 505–511 (2001). https://doi.org/10.1053/meta.2001.20973

    Article  CAS  Google Scholar 

  10. L.M. Caronia, A.A. Dwyer, D. Hayden, F. Amati, N. Pitteloud, F.J. Hayes, Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism. Clin. Endocrinol. 78(2), 291–296 (2013). https://doi.org/10.1111/j.1365-2265.2012.04486.x

    Article  CAS  Google Scholar 

  11. A. Hjalmarsen, U. Aasebo, A. Aakvaag, R. Jorde, Sex hormone responses in healthy men and male patients with chronic obstructive pulmonary disease during an oral glucose load. Scand. J. Clin. Lab. Investig. 56(7), 635–640 (1996)

    Article  CAS  Google Scholar 

  12. A. Iranmanesh, D. Lawson, J.D. Veldhuis, Glucose ingestion acutely lowers pulsatile LH and basal testosterone secretion in men. Am. J. Physiol. Endocrinol. Metab. 302(6), E724–730 (2012). https://doi.org/10.1152/ajpendo.00520.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.S. Volek, A.L. Gomez, D.M. Love, N.G. Avery, M.J. Sharman, W.J. Kraemer, Effects of a high-fat diet on postabsorptive and postprandial testosterone responses to a fat-rich meal. Metab.: Clin. Exp. 50(11), 1351–1355 (2001)

    Article  CAS  Google Scholar 

  14. S. Dhindsa, M.G. Miller, C.L. McWhirter, D.E. Mager, H. Ghanim, A. Chaudhuri, P. Dandona, Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes care 33(6), 1186–1192 (2010). https://doi.org/10.2337/dc09-1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Dandona, S. Dhindsa, Update: Hypogonadotropic hypogonadism in type 2 diabetes and obesity. J. Clin. Endocrinol. Metab. 96(9), 2643–2651 (2011). https://doi.org/10.1210/jc.2010-2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D.J. Handelsman, L. Wartofsky, Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J. Clin. Endocrinol. Metab. 98(10), 3971–3973 (2013). https://doi.org/10.1210/jc.2013-3375

    Article  CAS  PubMed  Google Scholar 

  17. J.L. Stone, A.H. Norris, Activities and attitudes of participants in the Baltimore longitudinal study. J. Gerontol. 21(4), 575–580 (1966)

    Article  CAS  PubMed  Google Scholar 

  18. American Diabetes, A., Standards of medical care in diabetes--2010. Diabetes Care 33 Suppl 1, S11–61 (2010). https://doi.org/10.2337/dc10-S011

    Article  CAS  Google Scholar 

  19. S. Bhasin, M. Pencina, G.K. Jasuja, T.G. Travison, A. Coviello, E. Orwoll, P.Y. Wang, C. Nielson, F. Wu, A. Tajar, F. Labrie, H. Vesper, A. Zhang, J. Ulloor, R. Singh, R. D’Agostino, R.S. Vasan, Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J. Clin. Endocrinol. Metab. 96(8), 2430–2439 (2011). https://doi.org/10.1210/jc.2010-3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    Google Scholar 

  21. S. Bhasin, G.R. Cunningham, F.J. Hayes, A.M. Matsumoto, P.J. Snyder, R.S. Swerdloff, V.M. Montori, E.S. Task Force, Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95(6), 2536–2559 (2010). https://doi.org/10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  22. S. Bhasin, G.R. Cunningham, F.J. Hayes, A.M. Matsumoto, P.J. Snyder, R.S. Swerdloff, V.M. Montori, Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 91(6), 1995–2010 (2006). https://doi.org/10.1210/jc.2005-2847

    Article  CAS  PubMed  Google Scholar 

  23. J.P. Mulhall, L.W. Trost, R.E. Brannigan, E.G. Kurtz, J.B. Redmon, K.A. Chiles, D.J. Lightner, M.M. Miner, M.H. Murad, C.J. Nelson, E.A. Platz, L.V. Ramanathan, R.W. Lewis, Evaluation and management of testosterone deficiency: AUA guideline. J. Urol. (2018). https://doi.org/10.1016/j.juro.2018.03.115

  24. J.D. Dean, C.G. McMahon, A.T. Guay, A. Morgentaler, S.E. Althof, E.F. Becher, T.J. Bivalacqua, A.L. Burnett, J. Buvat, A. El Meliegy, W.J. Hellstrom, E.A. Jannini, M. Maggi, A. McCullough, L.O. Torres, M. Zitzmann, The International Society for Sexual Medicine’s Process of Care for the assessment and management of testosterone deficiency in adult men. J. Sex. Med. 12(8), 1660–1686 (2015). https://doi.org/10.1111/jsm.12952

    Article  CAS  PubMed  Google Scholar 

  25. L. Pal, H.P. Chu, J. Shu, I. Topalli, N. Santoro, G. Karkanias, In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line. Fertil. Steril. 88(4 Suppl), 1143–1149 (2007). https://doi.org/10.1016/j.fertnstert.2007.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C.Y. Cheung, Prolactin suppresses luteinizing hormone secretion and pituitary responsiveness to luteinizing hormone-releasing hormone by a direct action at the anterior pituitary. Endocrinology 113(2), 632–638 (1983). https://doi.org/10.1210/endo-113-2-632

    Article  CAS  PubMed  Google Scholar 

  27. M.O. Thorner, S.M. Ryan, J.A. Wass, A. Jones, P. Bouloux, S. Williams, G.M. Besser, Effect of the dopamine agonist, lergotrile mesylate, on circulating anterior pituitary hormones in man. J. Clin. Endocrinol. Metab. 47(2), 372–378 (1978). https://doi.org/10.1210/jcem-47-2-372

    Article  CAS  PubMed  Google Scholar 

  28. B. Ishizuka, M.E. Quigley, S.S. Yen, Pituitary hormone release in response to food ingestion: evidence for neuroendocrine signals from gut to brain. J. Clin. Endocrinol. Metab. 57(6), 1111–1116 (1983). https://doi.org/10.1210/jcem-57-6-1111

    Article  CAS  PubMed  Google Scholar 

  29. H.E. Carlson, H.L. Wasser, S.R. Levin, J.N. Wilkins, Prolactin stimulation by meals is related to protein content. J. Clin. Endocrinol. Metab. 57(2), 334–338 (1983). https://doi.org/10.1210/jcem-57-2-334

    Article  CAS  PubMed  Google Scholar 

  30. H.E. Carlson, Prolactin stimulation by protein is mediated by amino acids in humans. J. Clin. Endocrinol. Metab. 69(1), 7–14 (1989). https://doi.org/10.1210/jcem-69-1-7

    Article  CAS  PubMed  Google Scholar 

  31. K. Esposito, F. Nappo, R. Marfella, G. Giugliano, F. Giugliano, M. Ciotola, L. Quagliaro, A. Ceriello, D. Giugliano, Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106(16), 2067–2072 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. R.C. Gaillard, D. Turnill, P. Sappino, A.F. Muller, Tumor necrosis factor alpha inhibits the hormonal response of the pituitary gland to hypothalamic releasing factors. Endocrinology 127(1), 101–106 (1990). https://doi.org/10.1210/endo-127-1-101

    Article  CAS  PubMed  Google Scholar 

  33. C. Mauduit, F. Gasnier, C. Rey, M.A. Chauvin, D.M. Stocco, P. Louisot, M. Benahmed, Tumor necrosis factor-alpha inhibits leydig cell steroidogenesis through a decrease in steroidogenic acute regulatory protein expression. Endocrinology 139(6), 2863–2868 (1998). https://doi.org/10.1210/endo.139.6.6077

    Article  CAS  PubMed  Google Scholar 

  34. V. Morales, P. Santana, R. Diaz, C. Tabraue, G. Gallardo, F. Lopez Blanco, I. Hernandez, L.F. Fanjul, C.M. Ruiz de Galarreta, Intratesticular delivery of tumor necrosis factor-alpha and ceramide directly abrogates steroidogenic acute regulatory protein expression and Leydig cell steroidogenesis in adult rats. Endocrinology 144(11), 4763–4772 (2003). https://doi.org/10.1210/en.2003-0569

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Institute on Aging Intramural research grants 03-AG-N035 and 15-AG-N074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Gagliano-Jucá.

Ethics declarations

Conflict of interest

Dr. Basaria has no conflict of interest related to the current work. He has previously received grant support from Abbott Pharmaceuticals for investigator-initiated studies unrelated to this study and has previously consulted for AbbVie, Eli Lilly, Inc and Regeneron Pharmaceuticals. The other authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The BLSA study protocol was reviewed by the National Institute of Environmental Health Sciences Institutional Review Board and the study with participants not from the BLSA cohort was approved by the Intramural Research Program of the National Institute on Aging and the institutional review board of the National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.

Informed consent

Informed consent was obtained from all individual participants included in both studies.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagliano-Jucá, T., Li, Z., Pencina, K.M. et al. Oral glucose load and mixed meal feeding lowers testosterone levels in healthy eugonadal men. Endocrine 63, 149–156 (2019). https://doi.org/10.1007/s12020-018-1741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1741-y

Keywords

Navigation