, Volume 62, Issue 3, pp 655–662 | Cite as

30mCi radioactive iodine achieving comparative excellent response in intermediate/high-risk nonmetastatic papillary thyroid cancer: a propensity score matching study

  • Yingqiang Zhang
  • Chen Wang
  • Xin Zhang
  • Hui Li
  • Xin Li
  • Yansong LinEmail author
Original Article



To determine the efficacy of low-dose radioactive iodine (RAI) therapy (30 mCi, 1110 MBq) in Chinese patients with intermediate- to high-risk papillary thyroid cancer (PTC) without distant metastasis.

Design and methods

This large retrospective study included Chinese patients with PTC that tested negative for thyroglobulin antibodies. Patients were categorized into low-dose (30 mCi, 1110 MBq) and high-dose (>100 mCi, 3700 MBq) RAI groups. Ablation rate and long-term response were compared between groups using propensity score matching (PSM) to minimize bias and confounding.


In total, we included 446 patients. No significant difference in ablation success rate was found between groups (P = 0.305) before or after PSM (N = 162; P = 0.200). Excellent response (ER) rate was not significant between groups before (P= 0.917) or after PSM (P= 0.798). Efficacy of low-dose RAI was similar to that of high-dose RAI in N0- (P= 1.000), N1a- (P= 0.981), and N1b-stage (P= 0.903) patients. Low- and high-dose RAI groups achieved similar ER rates in pre-ablative stimulated thyroglobulin level (≤1 ng/mL, P= 1.000; 1 < ps-Tg ≤ 5 ng/mL, P= 0.444; 5 < ps-Tg ≤ 10 ng/mL, P= 0.665; >10 ng/mL, P= 1.000) and BRAFV600E-positive (P= 0.324) subgroups.


Efficacy of low-dose RAI therapy was similar to that of high-dose for ablation and achieving ER in Chinese nonmetastatic intermediate- to high-risk PTC patients. High-dose RAI could not rectify ablation failure or non-ER rates in PTC patients with BRAFV600E, lymph node metastases, or unfavorable thyroglobulin levels.


Papillary thyroid cancer Radioactive iodine therapy TNM staging Response 



This work was supported by the National Natural Science Foundation of China (Grant nos. 81571714 and 81771875) and the CSCO-Hengrui Research Foundation (No. Y-HR2016-032). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study was approved by the institutional review board of Peking Union Medical College Hospital (Beijing, China) Ethics Committee. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    A.L. Mitchell, A. Gandhi, D. Scott-Coombes, P. Perros, Management of thyroid cancer: United Kingdom national multidisciplinary guidelines. J. Laryngol. Otol. 130(S2), S150–S160 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G. Randolph, A. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D. Steward, R.M. Tuttle, L. Wartofsky, 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 1–133 (2015), CrossRefGoogle Scholar
  4. 4.
    U. Mallick, C. Harmer, B. Yap, J. Wadsley, S. Clarke, L. Moss, A. Nicol, P.M. Clark, K. Farnell, R. McCready, J. Smellie, J.A. Franklyn, R. John, C.M. Nutting, K. Newbold, C. Lemon, G. Gerrard, A. Abdel-Hamid, J. Hardman, E. Macias, T. Roques, S. Whitaker, R. Vijayan, P. Alvarez, S. Beare, S. Forsyth, L. Kadalayil, A. Hackshaw, Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N. Engl. J. Med. 366(18), 1674–1685 (2012). CrossRefPubMedGoogle Scholar
  5. 5.
    M. Schlumberger, B. Catargi, I. Borget, D. Deandreis, S. Zerdoud, B. Bridji, S. Bardet, L. Leenhardt, D. Bastie, C. Schvartz, P. Vera, O. Morel, D. Benisvy, C. Bournaud, F. Bonichon, C. Dejax, M.E. Toubert, S. Leboulleux, M. Ricard, E. Benhamou, Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N. Engl. J. Med. 366(18), 1663–1673 (2012). CrossRefPubMedGoogle Scholar
  6. 6.
    C. Wang, T. Zhao, H. Li, W. Gao, Y. Lin, Low activity versus high activity. Nucl. Med. Commun. 38(5), 366–371 (2017). CrossRefPubMedGoogle Scholar
  7. 7.
    M. Kim, W.G. Kim, H. Oh, S. Park, H. Kwon, D.E. Song, T.Y. Kim, Y.K. Shong, W.B. Kim, T. Sung, M.J. Jeon, Comparison of the seventh and eighth editions of the American joint committee on cancer/union for international cancer control tumor-node-metastasis staging system for differentiated thyroid cancer. Thyroid. 1149–1155 (2017). CrossRefGoogle Scholar
  8. 8.
    J. Jonklaas, Nasal symptoms after radioiodine therapy: A rarely described side effect with similar frequency to lacrimal dysfunction. Thyroid 24(12), 1806–1814 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    R. Solans, J.A. Bosch, P. Galofre, F. Porta, J. Rosello, A. Selva-O’Callagan, M. Vilardell, Salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J. Nucl. Med. 42(5), 738–743 (2001)PubMedGoogle Scholar
  10. 10.
    P. Zhou, Z. Tang, W. Liu, M. Tian, L. Jin, X. Jiang, H. Wang, C.Tao, Z. Ding, Y. Peng, S. Qiu, Z. Dai, J. Zhou, J. Fan, Y. Shi, Perioperative blood transfusion does not affect recurrence-free and overall survivals after curative resection for intrahepatic cholangiocarcinoma: A propensity score matching analysis. BMC Cancer 17(1), 762–772 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    X. Yang, J. Li, X. Li, Z. Liang, W. Gao, J. Liang, S. Cheng, Y. Lin, TERT promoter mutation predicts radioiodine refractory in distant metastatic differentiated thyroid cancer. J. Nucl. Med. 58, 258–265 (2016). CrossRefPubMedGoogle Scholar
  12. 12.
    J.L. Marti, L. Morris, A.S. Ho, Selective use of radioactive iodine (RAI) in thyroid cancer: No longer “one size fits all”. Eur. J. Surg. Oncol. 44, 348–356 (2017). CrossRefPubMedGoogle Scholar
  13. 13.
    J.H. Jeong, E.J. Kong, S.Y. Jeong, S. Lee, I.H. Cho, K. Ah Chun, J. Lee, B. Ahn, Clinical outcomes of low-dose and high-dose postoperative radioiodine therapy in patients with intermediate-risk differentiated thyroid cancer. Nucl. Med. Commun. 38(3), 228–233 (2017). CrossRefPubMedGoogle Scholar
  14. 14.
    J.M. Han, W.G. Kim, T.Y. Kim, M.J. Jeon, J. Ryu, D.E. Song, S.J. Hong, Y.K. Shong, W.B. Kim, Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroidal extension. Thyroid 24(5), 820–825 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    T. Zhao, J. Liang, Z. Guo, T. Li, Y. Lin, In patients with low- to intermediate-risk thyroid cancer, a preablative thyrotropin level of 30 muIU/mL is not adequate to achieve better response to 131I therapy. Clin. Nucl. Med. 41(6), 454–458 (2016). CrossRefPubMedGoogle Scholar
  16. 16.
    I.J. Nixon, I. Ganly, S. Patel, F.L. Palmer, M.M. Whitcher, R.M. Tuttle, A.R. Shaha, J.P. Shah, The impact of microscopic extrathyroid extension on outcome in patients with clinical T1 and T2 well-differentiated thyroid cancer. Surgery 150(6), 1242–1249 (2011). CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    I. Ganly, I.J. Nixon, L.Y. Wang, F.L. Palmer, J.C. Migliacci, A. Aniss, M. Sywak, A.E. Eskander, J.L. Freeman, M.J. Campbell, W.T. Shen, F. Vaisman, D. Momesso, R. Corbo, M. Vaisman, A. Shaha, R.M. Tuttle, J.P. Shah, S.G. Patel, Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 25(10), 1106–1114 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J. Jonklaas, G. Nogueras-Gonzalez, M. Munsell, D. Litofsky, K.B. Ain, S.T. Bigos, J.D. Brierley, D.S. Cooper, B.R. Haugen, P.W. Ladenson, J. Magner, J. Robbins, D.S. Ross, M.C. Skarulis, D.L. Steward, H.R. Maxon, S.I. Sherman, The impact of age and gender on papillary thyroid cancer survival. J. Clin. Endocrinol. Metab. 97(6), E878–E887 (2012). CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    C. Wang, X. Zhang, H. Li, X. Li, Y. Lin, Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLoS ONE. 12(7), e179664 (2017). CrossRefGoogle Scholar
  20. 20.
    X. Yang, J. Liang, T. Li, T. Zhao, Y. Lin, Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 101(3), 1307–1313 (2016). CrossRefPubMedGoogle Scholar
  21. 21.
    R.C. Webb, R.S. Howard, A. Stojadinovic, D.Y. Gaitonde, M.K. Wallace, J. Ahmed, H.B. Burch, The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J. Clin. Endocrinol. Metab. 97(8), 2754–2763 (2012). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yingqiang Zhang
    • 1
    • 2
  • Chen Wang
    • 1
    • 2
    • 3
  • Xin Zhang
    • 1
    • 2
  • Hui Li
    • 1
    • 2
  • Xin Li
    • 4
  • Yansong Lin
    • 1
    • 2
    Email author
  1. 1.Department of Nuclear MedicinePeking Union Medical College HospitalBeijingChina
  2. 2.Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear MedicineBeijingChina
  3. 3.Centre Médical Universitaire (CMU), Université de GenèveGenevaSwitzerland
  4. 4.Department of Nuclear MedicineZhejiang Cancer HospitalHangzhouChina

Personalised recommendations