, Volume 63, Issue 1, pp 62–69 | Cite as

Maternal low-protein diet during lactation combined with early overfeeding impair male offspring’s long-term glucose homeostasis

  • Douglas Lopes AlmeidaEmail author
  • Fernando Salgueiro Simões
  • Lucas Paulo Jacinto Saavedra
  • Ana Maria Praxedes Moraes
  • Camila Cristina Ianoni Matiusso
  • Ananda Malta
  • Kesia Palma-Rigo
  • Paulo Cesar de Freitas Mathias
Original Article



The early-life nutritional environment affects long-term glucose homeostasis, we investigated the effects of maternal low-protein diet combined with postnatal early overfeeding on the male offspring’s glucose homeostasis in adulthood.


Only male rats were used, and their delivery was considered postnatal-day 0 (PN0). Wistar rats’ dams were divided into control (NP) or low-protein diet (LP). LP dams remained on the diet until PN14, after which all animals were supplied with the control diet. At PN2, litters were adjusted to 9 (control-NL) or 3 (postnatal-overfeeding-PO) pups, resulting in four experimental groups: NP-NL, NP-PO, LP-NL, and LP-PO. Litters were weaned on PN21. At PN80, a batch of animals from all experimental groups underwent surgery for cannula implantation, followed by intravenous glucose tolerance test (ivGTT), but the insulinogenic index (ISI) was calculated. At PN81, animals were euthanized and tissues were collected.


LP-diet and early postnatal-overfeeding were effective in promoting the expected biometric outcomes at PN21 and PN81, but the LP-PO animals present a biometric profile similar to the control (NP-NL) group. Postnatal-overfeeding increased fasting glycemia in LP-PO animals (p < 0.01). In the ivGTT, postnatal-overfeeding elevated the glycemia (p < 0.0001), exacerbated in LP-PO animals (p < 0.0001). Insulinemia was reduced by both, maternal LP-diet and postnatal-overfeeding, with a higher degree of reduction in LP-PO animals (p < 0.0001). Maternal LP-diet and postnatal-overfeeding reduced the ISI (p < 0.0001). Factors interaction lead the LP-PO to a lower ISI compared to all other groups (p < 0.0001).


The combination of low-protein diet in breastfeeding dams with postnatal overfeeding disturbed the offspring’s glucose metabolism in adulthood.


DOHaD Maternal diet Early postnatal overfeeding Metabolic programming Glucose homeostasis 



The present study was financially supported by the Brazilian Federal Research Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    A. Plagemann, T. Harder, K. Schellong, S. Schulz, J.H. Stupin, Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract. Res. Clin. Endocrinol. Metab. 26(5), 641–653 (2012)CrossRefGoogle Scholar
  2. 2.
    C.N. Hales, D.J. Barker, Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7), 595–601 (1992)CrossRefGoogle Scholar
  3. 3.
    Z. Abebe, D. Zelalem Anlay, B. Biadgo, A. Kebede, T. Melku, B. Enawgaw, M. Melku, High prevalence of undernutrition among children in Gondar town, northwest Ethiopia: a community-based cross-sectional study. Int. J. Pediatr. 2017, 5367070 (2017)CrossRefGoogle Scholar
  4. 4.
    J.C. de Oliveira, S. Grassiolli, C. Gravena, P.C. de Mathias, Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life. Nutr. Metab. 9(1), 80 (2012)CrossRefGoogle Scholar
  5. 5.
    F.B. Barbosa, A.R. Medina, S.L. Balbo, P.C. de Freitas Mathias, Low protein diets administered to lactating rats affect in a time-dependent manner the development of young. Res. Commun. Mol. Pathol. Pharmacol. 106(1-2), 63–76 (1999)Google Scholar
  6. 6.
    A.S. Moura, A.R. Carpinelli, F.B. Barbosa, C. Gravena, P.C. Mathias, Undernutrition during early lactation as an alternative model to study the onset of diabetes mellitus type II. Res. Commun. Mol. Pathol. Pharmacol. 92(1), 73–84 (1996)Google Scholar
  7. 7.
    R.K. Masters, E.N. Reither, D.A. Powers, Y.C. Yang, A.E. Burger, B.G. Link, The impact of obesity on US mortality levels: the importance of age and cohort factors in population estimates. Am. J. Public Health 103(10), 1895–1901 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Plagemann, K. Roepke, T. Harder, M. Brunn, A. Harder, M. Wittrock-Staar, T. Ziska, K. Schellong, E. Rodekamp, K. Melchior et al. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J. Perinat. Med. 38(4), 393–400 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Boullu-Ciocca, A. Dutour, V. Guillaume, V. Achard, C. Oliver, M. Grino, Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: its relationship with the metabolic syndrome. Diabetes 54(1), 197–203 (2005)CrossRefGoogle Scholar
  10. 10.
    P.D. Gluckman, M.A. Hanson, Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int. J. Obes. 32(Suppl 7), S62–S71 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Metallinos-Katsaras, A. Must, K. Gorman, A longitudinal study of food insecurity on obesity in preschool children. J. Acad. Nutr. Diet. 112(12), 1949–1958 (2012)CrossRefGoogle Scholar
  12. 12.
    A.L. Thompson, M.E. Bentley, The critical period of infant feeding for the development of early disparities in obesity. Soc. Sci. Med. 97, 288–296 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Darmon, A. Drewnowski, Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73(10), 643–660 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Malta, E.G. de Moura, T.A. Ribeiro, L.P. Tofolo, L. Abdennebi-Najar, D. Vieau, L.F. Barella, P.C. de Freitas Mathias, P.C. Lisboa, J.C. de Oliveira, Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats. Eur. J. Nutr. 55(4), 1423–1433 (2016)CrossRefGoogle Scholar
  15. 15.
    P.G. Reeves, F.H. Nielsen, G.C. Fahey Jr, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123(11), 1939–1951 (1993)CrossRefGoogle Scholar
  16. 16.
    P. Trinder, Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22(2), 158–161 (1969)CrossRefGoogle Scholar
  17. 17.
    Y. Oritani, T. Okitsu, E. Nishimura, M. Sai, T. Ito, S. Takeuchi, Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats. Biochem. Biophys. Res. Commun. 470(3), 753–758 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Tura, A. Kautzky-Willer, G. Pacini, Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT. Diabetes Res. Clin. Pract. 72(3), 298–301 (2006)CrossRefGoogle Scholar
  19. 19.
    D.L. de Almeida, G.S. Fabricio, A.B. Trombini, A. Pavanello, L.P. Tofolo, T.A. da Silva Ribeiro, P.C. de Freitas Mathias, K. Palma-Rigo, Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats. Cell. Physiol. Biochem. 32(6), 1621–1630 (2013)CrossRefGoogle Scholar
  20. 20.
    I.P. Martins, J.C. de Oliveira, A. Pavanello, C.C.I. Matiusso, C. Previate, L.P. Tofolo, T.A. Ribeiro, C.C. da Silva Franco, R.A. Miranda, K.V. Prates et al. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood. J. Nutr. Biochem. 57, 153–161 (2018)CrossRefGoogle Scholar
  21. 21.
    F.B. Barbosa, K. Capito, H. Kofod, P. Thams, Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life. Br. J. Nutr. 87(2), 147–155 (2002)CrossRefGoogle Scholar
  22. 22.
    P. Pajunen, A. Kotronen, E. Korpi-Hyovalti, S. Keinanen-Kiukaanniemi, H. Oksa, L. Niskanen, T. Saaristo, J.T. Saltevo, J. Sundvall, M. Vanhala et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey. BMC Public Health 11, 754 (2011)CrossRefGoogle Scholar
  23. 23.
    M.H. Vickers, B.H. Breier, D. McCarthy, P.D. Gluckman, Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285(1), R271–R273 (2003)CrossRefGoogle Scholar
  24. 24.
    J.S. Wattez, F. Delahaye, L.F. Barella, A. Dickes-Coopman, V. Montel, C. Breton, P. Mathias, B. Foligne, J. Lesage, D. Vieau, Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. J. Dev. Orig. Health Dis. 5(2), 109–120 (2014)CrossRefGoogle Scholar
  25. 25.
    X. Casabiell, V. Pineiro, M.A. Tome, R. Peino, C. Dieguez, F.F. Casanueva, Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J. Clin. Endocrinol. Metab. 82(12), 4270–4273 (1997)CrossRefGoogle Scholar
  26. 26.
    B. Reusens, C. Remacle, Programming of the endocrine pancreas by the early nutritional environment. Int. J. Biochem. Cell Biol. 38(5-6), 913–922 (2006)CrossRefGoogle Scholar
  27. 27.
    A.C. Ravelli, J.H. van der Meulen, C. Osmond, D.J. Barker, O.P. Bleker, Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity. Arch. Dis. Child. 82(3), 248–252 (2000)CrossRefGoogle Scholar
  28. 28.
    A. Jahan-Mihan, J. Rodriguez, C. Christie, M. Sadeghi, T. Zerbe, The role of maternal dietary proteins in development of metabolic syndrome in offspring. Nutrients 7(11), 9185–9217 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Kabasakal Cetin, H. Dasgin, A. Gulec, I. Onbasilar, A. Akyol, Maternal low quality protein diet alters plasma amino acid concentrations of weaning rats. Nutrients 7(12), 9847–9859 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Martin Agnoux, J.P. Antignac, C.Y. Boquien, A. David, E. Desnots, V. Ferchaud-Roucher, D. Darmaun, P. Parnet, M.C. Alexandre-Gouabau, Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: potential role on pup growth and metabolic status. J. Nutr. Biochem. 26(7), 784–795 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Saure, M. Armeno, C. Barcala, V. Giudici, C.S. Mazza, Excessive weight gain in exclusively breast-fed infants. J. Pediatr. Endocrinol. Metab. 30(7), 719–724 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Douglas Lopes Almeida
    • 1
    Email author return OK on get
  • Fernando Salgueiro Simões
    • 1
    • 2
  • Lucas Paulo Jacinto Saavedra
    • 1
  • Ana Maria Praxedes Moraes
    • 1
  • Camila Cristina Ianoni Matiusso
    • 1
  • Ananda Malta
    • 1
  • Kesia Palma-Rigo
    • 1
  • Paulo Cesar de Freitas Mathias
    • 1
  1. 1.Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and GeneticsState University of MaringáMaringáBrazil
  2. 2.Plenavita ClinicsRibeirão PretoBrazil

Personalised recommendations