Advertisement

Endocrine

, Volume 62, Issue 2, pp 423–431 | Cite as

Thyroid Cancer Epidemiology in South Spain: a population-based time trend study

  • Elena Salamanca-Fernández
  • Miguel Rodriguez-BarrancoEmail author
  • Yoe-Ling Chang-Chan
  • Daniel Redondo-Sánchez
  • Santiago Domínguez-López
  • Eloísa Bayo
  • Dariusz Narankiewicz
  • José Expósito
  • María José Sánchez
Original Article

Abstract

Purpose

Thyroid cancer (TC) is the most common malignant disease of the endocrine system. The aim of this study was to analyze incidence and mortality trends of TC (C73 according to ICD-O-3) in Granada (Southern Spain) during the period 1985–2013, by sex, age, and histological type.

Methods

This is a population-based cross-sectional study. Incidence data were obtained from the population-based Cancer Registry of Granada. All newly diagnosed cases of thyroid cancer over the period 1985–2013 were included. Joinpoint regression analysis with age-standardized rates were used to estimate annual percentage change (APC), CI 95% and turning points in trends. Results are presented by sex, age group, and histological type.

Results

During the study period there were 1265 diagnosed cases of TC in Granada (72.6% in women). Incidence trends significantly increased in both men (APC: + 5.4%) and women (APC: + 4.7%). The most common histological types in both sexes were papillary (74.8%) and follicular (16.8%). The incidence has increased during the study period mainly due to papillary carcinoma, which has increased annually around 6% in both sexes. TC mortality trend during this period decreased in men (APC: −0.3%) and women (APC: −2.3%).

Conclusion

Our data showed an increasing trend in incidence of thyroid cancer in Granada, especially in women between 55–64 years. Mortality showed a slight decrease trend during the study period in both sexes. Papillary carcinoma was the most common histological type, with an increase of the relative weight of papillary microcarcinomas. Our study is in accordance with the European and worldwide trends in thyroid cancer incidence and mortality and sex differences.

Keywords

Thyroid cancer Incidence Mortality Epidemiology Trends Sex differences 

Notes

Acknowledgements

We thank Granada Cancer Registry workers for their job collecting these data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. This study is based on secondary administrative data.

References

  1. 1.
    F. Bray, J.S. Ren, E. Masuyer, J. Ferlay, Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer 132, 1133–1145 (2013).  https://doi.org/10.1002/ijc.27711 CrossRefPubMedGoogle Scholar
  2. 2.
    B.A. Kilfoy, T. Zheng, T.R. Holford, X. Han, M.H. Ward, A. Sjodin, Y. Zhang, Y. Bai, C. Zhu, G.L. Guo, N. Rothman, Y. Zhang, International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control 20, 525–531 (2009).  https://doi.org/10.1007/s10552-008-9260-4 CrossRefPubMedGoogle Scholar
  3. 3.
    G. Pellegriti, F. Frasca, C. Regalbuto, S. Squatrito, R. Vigneri, Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013).  https://doi.org/10.1155/2013/965212 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    F. Bray, M. Colombet, L. Mery, M. Piñeros, A. Znaor, Z.R., F.J. Cancer Incidence in Five Continents, Vol. XI (electronic version). (International Agency for Research on Cancer, Lyon), 2017)Google Scholar
  5. 5.
    J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).  https://doi.org/10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  6. 6.
    J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent, S. Rosso, J.W.W. Coebergh, H. Comber, D. Forman, F. Bray, Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).  https://doi.org/10.1016/j.ejca.2012.12.027 CrossRefPubMedGoogle Scholar
  7. 7.
    W. H. O.: Globocan 2012 - Home, http://globocan.iarc.fr/Default.aspx
  8. 8.
    J. Galceran, A. Ameijide, M. Carulla, A. Mateos, J.R. Quirós, D. Rojas, A. Alemán, A. Torrella, M. Chico, M. Vicente, J.M. Díaz, N. Larrañaga, R. Marcos-Gragera, M.J. Sánchez, J. Perucha, P. Franch, C. Navarro, E. Ardanaz, J. Bigorra, P. Rodrigo, R.P. Bonet, A. Mateos, E. Almar, J.R. Quirós, M.V. Argüelles, D. Rojas, A. Alemán, A. Torrella, C. Sabater, P. Botella, M. Chico, M. Ripoll, C. Díaz, M. Vicente, N. Fuster, J.M. Díaz, R. Jiménez, A.I.M. Navarro, N. Larrañaga, J. Bidaurrazaga, A. Lopez-de-Munain, R. Marcos-Gragera, À. Izquierdo, L. Vilardell, M.J. Sánchez, E. Molina-Portillo, M. Rodríguez-Barranco, J. Perucha, P. Franch, M. Ramos, C. Navarro, M.D. Chirlaque, D. Salmerón, E. Ardanaz, M. Guevara, R. Burgui, J. Galceran, A. Ameijide, M. Carulla, J. Bigorra, R.P. Bonet, E. Pardo, Cancer incidence in Spain, 2015. Clin. Transl. Oncol. 19, 799–825 (2017).  https://doi.org/10.1007/s12094-016-1607-9 CrossRefPubMedGoogle Scholar
  9. 9.
    ECIS European Commission, https://ecis.jrc.ec.europa.eu/
  10. 10.
    M.D. Chirlaque, D. Salmerón, J. Galceran, A. Ameijide, A. Mateos, A. Torrella, R. Jiménez, N. Larrañaga, R. Marcos-Gragera, E. Ardanaz, M. Sant, P. Minicozzi, C. Navarro, M.J. Sánchez, REDECAN Working Group: Cancer survival in adult patients in Spain. Results from nine population-based cancer registries. Clin. Transl. Oncol. 20, 201–211 (2017). https://doi.org/10.1007/s12094-017-1710-6CrossRefGoogle Scholar
  11. 11.
    WHO cancer mortality database (IARC), http://www-dep.iarc.fr/WHOdb/WHOdb.htm, Accessed on 22/07/2018 (2015)
  12. 12.
    A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).  https://doi.org/10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  13. 13.
    C. La Vecchia, M. Malvezzi, C. Bosetti, W. Garavello, P. Bertuccio, F. Levi, E. Negri, Thyroid cancer mortality and incidence: a global overview. Int. J. Cancer 136, 2187–2195 (2015).  https://doi.org/10.1002/ijc.29251 CrossRefPubMedGoogle Scholar
  14. 14.
    L. Dal Maso, M. Lise, P. Zambon, F. Falcini, E. Crocetti, D. Serraino, C. Cirilli, R. Zanetti, M. Vercelli, S. Ferretti, F. Stracci, V. de Lisi, S. Busco, G. Tagliabue, M. Budroni, R. Tumino, A. Giacomin, S. Franceschi, A.W. Group, Incidence of thyroid cancer in Italy, 1991-2005: time trends and age-period-cohort effects. Ann. Oncol. 22, 957–963 (2011).  https://doi.org/10.1093/annonc/mdq467 CrossRefPubMedGoogle Scholar
  15. 15.
    M.D. Chirlaque, F. Moldenhauer, D. Salmerón, C. Navarro, Patrón evolutivo de la incidencia de cáncer de tiroides en la Región de Murcia de 1984 a 2008. Gac. Sanit. 28, 397–400 (2014).  https://doi.org/10.1016/J.GACETA.2014.05.005 CrossRefPubMedGoogle Scholar
  16. 16.
    L. Raposo, S. Morais, M.J. Oliveira, A.P. Marques, M. José Bento, N. Lunet, Trends in thyroid cancer incidence and mortality in Portugal. Eur. J. Cancer Prev. 2008, 1 (2016).  https://doi.org/10.1097/CEJ.0000000000000229 CrossRefGoogle Scholar
  17. 17.
    C. Bosetti, P. Bertuccio, M. Malvezzi, F. Levi, L. Chatenoud, E. Negri, C. La Vecchia, Cancer mortality in Europe, 2005-2009, and an overview of trends since 1980. Ann. Oncol. 24, 2657–2671 (2013).  https://doi.org/10.1093/annonc/mdt301 CrossRefPubMedGoogle Scholar
  18. 18.
    C.M. Kitahara, J.A. Sosa, The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 12, 646–653 (2016).  https://doi.org/10.1038/nrendo.2016.110 CrossRefPubMedGoogle Scholar
  19. 19.
    N. Pandeya, D.S. McLeod, K. Balasubramaniam, P.D. Baade, P.H. Youl, C.J. Bain, R. Allison, S.J. Jordan, Increasing thyroid cancer incidence in Queensland, Australia 1982-2008 - True increase or overdiagnosis. Clin. Endocrinol. (Oxf.). 84, 257–264 (2016).  https://doi.org/10.1111/cen.12724 CrossRefPubMedGoogle Scholar
  20. 20.
    L. Davies, Overdiagnosis of thyroid cancer. BMJ 355, i6312 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Vaccarella, S. Franceschi, F. Bray, C.P. Wild, M. Plummer, L. Dal Maso, Worldwide Thyroid-Cancer Epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med. 375, 614–617 (2016).  https://doi.org/10.1056/NEJMp1604412 CrossRefPubMedGoogle Scholar
  22. 22.
    H.G. Welch, W.C. Black, Overdiagnosis in cancer. J. Natl. Cancer Inst. 102, 605–613 (2010).  https://doi.org/10.1093/jnci/djq099 CrossRefPubMedGoogle Scholar
  23. 23.
    R. De Angelis, M. Sant, M.P. Coleman, S. Francisci, P. Baili, D. Pierannunzio, A. Trama, O. Visser, H. Brenner, E. Ardanaz, M. Bielska-Lasota, G. Engholm, A. Nennecke, S. Siesling, F. Berrino, R. Capocaccia, EUROCARE-5 Working Group: Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE-5-a population-based study. Lancet Oncol. 15, 23–34 (2014).  https://doi.org/10.1016/S1470-2045(13)70546-1 CrossRefPubMedGoogle Scholar
  24. 24.
    WHO: World Health Organization. International statistical classification of diseases and related health problems. 10th revision. Geneva. (1992)Google Scholar
  25. 25.
    A. Fritz, C. Percy, A., Jack, K. Shanmugaratnam, L.H. Sobin, M.D. Parkin, C. WHO, Percy, V. Van, Holten,C. Muir: International Classification of Diseases for Oncology. 3rd ed., Geneva (2013)Google Scholar
  26. 26.
    C. Percy, V.H. V, C. Muir. International classification of diseases for oncology. (World Health Organization, Geneva), 1990)Google Scholar
  27. 27.
    A. Harari, R.K. Singh, Increased rates of advanced thyroid cancer in California. J. Surg. Res. 201, 244–252 (2016).  https://doi.org/10.1016/j.jss.2015.10.037 CrossRefPubMedGoogle Scholar
  28. 28.
    A. Safavi, F. Azizi, R. Jafari, S. Chaibakhsh, A.A. Safavi, Thyroid cancer epidemiology in Iran: A time trend study. Asian Pacific. J. Cancer Prev. 17, 407–412 (2016).  https://doi.org/10.7314/APJCP.2016.17.1.407 CrossRefGoogle Scholar
  29. 29.
    L. Keinan-Boker, B.G. Silverman, Trends of thyroid cancer in Israel: 1980–2012. Rambam Maimonides Med. J. 7, e0001 (2016).  https://doi.org/10.5041/RMMJ.10228 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    M. Colonna, Z. Uhry, A.V. Guizard, P. Delafosse, C. Schvartz, A. Belot, P. Grosclaude, F. network, Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol. 39, 511–518 (2015).  https://doi.org/10.1016/j.canep.2015.04.015 CrossRefPubMedGoogle Scholar
  31. 31.
    H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, D.M. L, Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. JAMA 317, 1338 (2017).  https://doi.org/10.1001/jama.2017.2719 CrossRefPubMedGoogle Scholar
  32. 32.
    J. Lukas, J. Drabek, D. Lukas, L. Dusek, J. Gatek, The epidemiology of thyroid cancer in the Czech Republic in comparison with other countries. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech. Repub. 157, 266–275 (2013).  https://doi.org/10.5507/bp.2012.086 CrossRefPubMedGoogle Scholar
  33. 33.
    J.R. Burgess, Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982-1997). Thyroid 12, 141–149 (2002).  https://doi.org/10.1089/105072502753522374 CrossRefPubMedGoogle Scholar
  34. 34.
    T. Hakala, P. Kellokumpu-Lehtinen, I. Kholová, K. Holli, H. Huhtala, J. Sand, Rising incidence of small size papillary thyroid cancers with no change in disease-specific survival in finnish thyroid cancer patients. Scand. J. Surg. 101, 301–306 (2012).  https://doi.org/10.1177/145749691210100415 CrossRefPubMedGoogle Scholar
  35. 35.
    C. La Vecchia, C. Bosetti, F. Lucchini, P. Bertuccio, E. Negri, P. Boyle, F. Levi, Cancer mortality in Europe, 2000-2004, and an overview of trends since 1975. Ann. Oncol. 21, 1323–1360 (2009).  https://doi.org/10.1093/annonc/mdp530 CrossRefPubMedGoogle Scholar
  36. 36.
    R.M. Reynolds, J. Weir, D.L. Stockton, D.H. Brewster, T.C. Sandeep, M.W.J. Strachan, Changing trends in incidence and mortality of thyroid cancer in Scotland. Clin. Endocrinol. (Oxf.). 62, 156–162 (2005).  https://doi.org/10.1111/j.1365-2265.2004.02187.x CrossRefPubMedGoogle Scholar
  37. 37.
    J.H. Lubin, M.J. Adams, R. Shore, E. Holmberg, A.B. Schneider, M.M. Hawkins, L.L. Robison, P.D. Inskip, M. Lundell, R. Johansson, R.A. Kleinerman, F. de Vathaire, L. Damber, S. Sadetzki, M. Tucker, R. Sakata, L.H.S. Veiga, Thyroid cancer following childhood low dose radiation exposure: a pooled analysis of nine cohorts. J. Clin. Endocrinol. Metab. 102(7), 2575–2583 (2017).  https://doi.org/10.1210/jc.2016-3529 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    K.B. Moysich, R.J. Menezes, A.M. Michalek, Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review. Lancet Oncol. 3, 269–279 (2002).  https://doi.org/10.1016/S1470-2045(02)00727-1 CrossRefPubMedGoogle Scholar
  39. 39.
    UNSCEAR: UNSCEAR 2008 Report. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with Scientific Annexes. (2008)Google Scholar
  40. 40.
    Y. Liu, L. Su, H. Xiao, Review of factors related to the thyroid cancer epidemic. Int. J. Endocrinol. 2017, 1–9 (2017).  https://doi.org/10.1155/2017/5308635 CrossRefGoogle Scholar
  41. 41.
    L. Dal Maso, C. Bosetti, C. La Vecchia, S. Franceschi, Risk factors for thyroid cancer: An epidemiological review focused on nutritional factors. Cancer Causes Control 20, 75–86 (2009).  https://doi.org/10.1007/s10552-008-9219-5 CrossRefPubMedGoogle Scholar
  42. 42.
    R. Zamora-Ros, S. Rinaldi, K.K. Tsilidis, E. Weiderpass, M.C. Boutron-Ruault, A.L. Rostgaard-Hansen, A. Tjønneland, F. Clavel-Chapelon, S. Mesrine, V.A. Katzke, T. Kühn, J. Förster, H. Boeing, A. Trichopoulou, P. Lagiou, E. Klinaki, G. Masala, S. Sieri, F. Ricceri, R. Tumino, A. Mattiello, P.H.M. Peeters, H.B. Bueno-De-Mesquita, D. Engeset, G. Skeie, M. Argüelles, A. Agudo, M.J. Sánchez, M.D. Chirlaque, A. Barricarte, S. Chamosa, M. Almquist, A. Tosovic, J. Hennings, M. Sandström, J.A. Schmidt, K.T. Khaw, N.J. Wareham, A.J. Cross, N. Slimani, G. Byrnes, I. Romieu, E. Riboli, S. Franceschi, Energy and macronutrient intake and risk of differentiated thyroid carcinoma in the European Prospective Investigation into Cancer and Nutrition study. Int. J. Cancer 138, 65–73 (2016).  https://doi.org/10.1002/ijc.29693 CrossRefPubMedGoogle Scholar
  43. 43.
    E. Peterson, P. De, R. Nuttall, BMI, diet and female reproductive factors as risks for thyroid cancer: a systematic review. PLoS One 7, e29177 (2012).  https://doi.org/10.1371/journal.pone.0029177 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    R. Zamora-Ros, J. Castañeda, S. Rinaldi, V. Cayssials, N. Slimani, E. Weiderpass, K.K. Tsilidis, M.-C. Boutron-Ruault, K. Overvad, A.K. Eriksen, A. Tjønneland, T. Kühn, V. Katzke, H. Boeing, A. Trichopoulou, C. La Vecchia, A. Kotanidou, D. Palli, S. Grioni, A. Mattiello, R. Tumino, V. Sciannameo, E. Lund, S. Merino, E. Salamanca-Fernández, P. Amiano, J.M. Huerta, A. Barricarte, U. Ericson, M. Almquist, J. Hennings, M. Sandström, H.B. Bueno-de-Mesquita, P.H. Peeters, K.-T. Khaw, N.J. Wareham, J.A. Schmidt, A.J. Cross, E. Riboli, A. Scalbert, I. Romieu, A. Agudo, S. Franceschi, Consumption of Fish Is Not Associated with Risk of Differentiated Thyroid Carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. J. Nutr. 147, 1366–1373 (2017).  https://doi.org/10.3945/jn.117.247874 CrossRefPubMedGoogle Scholar
  45. 45.
    R. Zamora-Ros, V. Béraud, S. Franceschi, V. Cayssials, K.K. Tsilidis, M.C. Boutron-Ruault, E. Weiderpass, K. Overvad, A. Tjønneland, A.K. Eriksen, F. Bonnet, A. Affret, V. Katzke, T. Kühn, H. Boeing, A. Trichopoulou, E. Valanou, A. Karakatsani, G. Masala, S. Grioni, M. Santucci de Magistris, R. Tumino, F. Ricceri, G. Skeie, C.L. Parr, S. Merino, E. Salamanca-Fernández, M.D. Chirlaque, E. Ardanaz, P. Amiano, M. Almquist, I. Drake, J. Hennings, M. Sandström, H.B. Bueno-de-Mesquita, P.H. Peeters, K.T. Khaw, N.J. Wareham, J.A. Schmidt, A. Perez-Cornago, D. Aune, E. Riboli, N. Slimani, A. Scalbert, I. Romieu, A. Agudo, S. Rinaldi, Consumption of fruits, vegetables and fruit juices and differentiated thyroid carcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Int. J. Cancer 142, 449–459 (2018).  https://doi.org/10.1002/ijc.30880 CrossRefPubMedGoogle Scholar
  46. 46.
    M. Han, J. Kim, Coffee consumption and the risk of thyroid cancer: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 14, 129 (2017).  https://doi.org/10.3390/ijerph14020129 CrossRefPubMedCentralGoogle Scholar
  47. 47.
    A. Sen, K.K. Tsilidis, N.E. Allen, S. Rinaldi, P.N. Appleby, M. Almquist, J.A. Schmidt, C.C. Dahm, K. Overvad, A. Tjønneland, A.L. Rostgaard-Hansen, F. Clavel-Chapelon, L. Baglietto, M.-C. Boutron-Ruault, T. Kühn, V.A. Katze, H. Boeing, A. Trichopoulou, C. Tsironis, P. Lagiou, D. Palli, V. Pala, S. Panico, R. Tumino, P. Vineis, H.A. Bueno-de-Mesquita, P.H. Peeters, A. Hjartåker, E. Lund, E. Weiderpass, J.R. Quirós, A. Agudo, M.-J. Sánchez, L. Arriola, D. Gavrila, A.B. Gurrea, A. Tosovic, J. Hennings, M. Sandström, I. Romieu, P. Ferrari, R. Zamora-Ros, K.-T. Khaw, N.J. Wareham, E. Riboli, M. Gunter, S. Franceschi, Baseline and lifetime alcohol consumption and risk of differentiated thyroid carcinoma in the EPIC study. Br. J. Cancer 113, 840–847 (2015).  https://doi.org/10.1038/bjc.2015.280 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    S.-H. Hong, S.-K. Myung, H.S. Kim, Korean Meta-Analysis (KORMA) Study Group: alcohol intake and risk of thyroid cancer: a meta-analysis of observational studies. Cancer Res. Treat. 49, 534–547 (2017).  https://doi.org/10.4143/crt.2016.161 CrossRefPubMedGoogle Scholar
  49. 49.
    S. Rinaldi, M. Lise, F. Clavel-Chapelon, M.-C.C. Boutron-Ruault, G. Guillas, K. Overvad, A. Tjønneland, J. Halkjær, A. Lukanova, R. Kaaks, M.M. Bergmann, H. Boeing, A. Trichopoulou, D. Zylis, E. Valanou, D. Palli, C. Agnoli, R. Tumino, S. Polidoro, A. Mattiello, H.B. Bueno-de-Mesquita, P.H. Peeters, E. Weiderpass, E. Lund, G. Skeie, L. Rodríguez, N. Travier, M.-J.J. Sánchez, P. Amiano, J.-M.M. Huerta, E. Ardanaz, T. Rasmuson, G. Hallmans, M. Almquist, J. Manjer, K.K. Tsilidis, N.E. Allen, K.-T.T. Khaw, N. Wareham, G. Byrnes, I. Romieu, E. Riboli, S. Franceschi, H. Bas Bueno-De-Mesquita, P.H. Peeters, E. Weiderpass, E. Lund, G. Skeie, L. Rodríguez, N. Travier, M.-J.J. Sánchez, P. Amiano, J.-M.M. Huerta, E. Ardanaz, T. Rasmuson, G. Hallmans, M. Almquist, J. Manjer, K.K. Tsilidis, N.E. Allen, K.-T.T. Khaw, N. Wareham, G. Byrnes, I. Romieu, E. Riboli, S: Franceschi, Body size and risk of differentiated thyroid carcinomas: Findings from the EPIC study. Int. J. Cancer 131, 1004–1014 (2012).  https://doi.org/10.1002/ijc.27601 CrossRefGoogle Scholar
  50. 50.
    R. Zamora-Ros, S. Rinaldi, C. Biessy, A. Tjønneland, J. Halkjær, A. Fournier, M.C. Boutron-Ruault, S. Mesrine, K. Tikk, R.T. Fortner, H. Boeing, J. Förster, A. Trichopoulou, D. Trichopoulos, E.M. Papatesta, G. Masala, G. Tagliabue, S. Panico, R. Tumino, S. Polidoro, P.H.M. Peeters, H.B. Bueno-De-Mesquita, E. Weiderpass, E. Lund, M. Argüelles, A. Agudo, E. Molina-Montes, C. Navarro, A. Barricarte, N. Larrañaga, J. Manjer, M. Almquist, M. Sandström, J. Hennings, K.K. Tsilidis, J.A. Schmidt, K.T. Khaw, N.J. Wareham, I. Romieu, G. Byrnes, M.J. Gunter, E. Riboli, S. Franceschi, Reproductive and menstrual factors and risk of differentiated thyroid carcinoma: The EPIC study. Int. J. Cancer 136, 1218–1227 (2015).  https://doi.org/10.1002/ijc.29067 CrossRefPubMedGoogle Scholar
  51. 51.
    J. Zhu, X. Zhu, C. Tu, Y.-Y. Li, K.-Q. Qian, C. Jiang, T.-B. Feng, C. Li, G.J. Liu, L. Wu, Parity and thyroid cancer risk: a meta-analysis of epidemiological studies. Cancer Med. 5, 739–752 (2016).  https://doi.org/10.1002/cam4.604 CrossRefPubMedGoogle Scholar
  52. 52.
    X. Yi, J. Zhu, X. Zhu, G. J. Liu, L. Wu, Breastfeeding and thyroid cancer risk in women: a dose responsemeta-analysis of epidemiological studies. Clin. Nutr. 35, 1039–1046 (2015). https://doi.org/10.1016/j.clnu.2015.12.005CrossRefGoogle Scholar
  53. 53.
    S. Shin, N. Sawada, E. Saito, T. Yamaji, M. Iwasaki, T. Shimazu, S. Sasazuki, M. Inoue, S. Tsugane, Menstrual and reproductive factors in the risk of thyroid cancer in Japanese women. Eur. J. Cancer Prev. 27, 361–369 (2018).  https://doi.org/10.1097/CEJ.0000000000000338 CrossRefGoogle Scholar
  54. 54.
    Q.T. Nguyen, E.J. Lee, M.G. Huang, Y.I. Park, A. Khullar, R.A. Plodkowski, Diagnosis and treatment of patients with thyroid cancer. Am. Heal. Drug Benefits 8, 30–40 (2015)Google Scholar
  55. 55.
    L.G.T. Morris, R.M. Tuttle, L. Davies, Changing Trends in the Incidence of Thyroid Cancer in the United States. JAMA Otolaryngol. Neck Surg. 142, 709 (2016).  https://doi.org/10.1001/jamaoto.2016.0230 CrossRefGoogle Scholar
  56. 56.
    Y.J. Cho, D.Y. Kim, E.-C. Park, K.-T. Han, Thyroid fine-needle aspiration biopsy positively correlates with increased diagnosis of thyroid cancer in South Korean patients. BMC Cancer 17, 114 (2017).  https://doi.org/10.1186/s12885-017-3104-0 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    C. Saint-Martin, M. Dramé, S. Dabakuyo, L. Kanagaratnam, P. Arveux, C. Schvartz, Overdiagnosis of thyroid cancer in the Marne and Ardennes Departments of France from 1975 to 2014. Ann. Endocrinol. (Paris) 78, 27–32 (2017).  https://doi.org/10.1016/j.ando.2016.07.005 CrossRefGoogle Scholar
  58. 58.
    J. Zagzag, A. Kenigsberg, K.N. Patel, K.S. Heller, J.B. Ogilvie, Thyroid cancer is more likely to be detected incidentally on imaging in private hospital patients. J. Surg. Res. 215, 239–244 (2017).  https://doi.org/10.1016/j.jss.2017.03.059 CrossRefPubMedGoogle Scholar
  59. 59.
    L. Enewold, K. Zhu, E. Ron, A.J. Marrogi, A. Stojadinovic, G.E. Peoples, S.S. Devesa, Rising Thyroid Cancer Incidence in the United States by Demographic and Tumor Characteristics, 1980-2005. Cancer Epidemiol. Biomark. Prev. 18, 784–791 (2009).  https://doi.org/10.1158/1055-9965.EPI-08-0960 CrossRefGoogle Scholar
  60. 60.
    B. Aschebrook-Kilfoy, R.H. Grogan, Overdiagnosis of Thyroid Cancer and Graves’ Disease. Thyroid 24, 403–404 (2014).  https://doi.org/10.1089/thy.2013.0584 CrossRefPubMedGoogle Scholar
  61. 61.
    M. Garcia-Talavera, J.L. Matarranz, M. Martinez, R. Salas, L. Ramos, Natural ionizing radiation exposure of the Spanish population. Radiat. Prot. Dosimetry 124, 353–359 (2007).  https://doi.org/10.1093/rpd/ncm213 CrossRefPubMedGoogle Scholar
  62. 62.
    F. Soriguer, E. García-Fuentes, C. Gutierrez-Repiso, G. Rojo-Martínez, I. Velasco, A. Goday, A. Bosch-Comas, E. Bordiú, A. Calle, R. Carmena, R. Casamitjana, L. Castaño, C. Castell, M. Catalá, E. Delgado, J. Franch, S. Gaztambide, J. Girbés, R. Gomis, G. Gutiérrez, A. López-Alba, M.T. Martínez-Larrad, E. Menéndez, I. Mora-Peces, E. Ortega, G. Pascual-Manich, M. Serrano-Rios, S. Valdés, J.A. Vázquez, J. Vendrell, Iodine intake in the adult population. Di@Bet. es Study. Clin. Nutr. 31(6), 882–888 (2012). https://doi.org/10.1016/j.clnu.2012.04.004 CrossRefPubMedGoogle Scholar
  63. 63.
    K.L. Caldwell, A. Makhmudov, E. Ely, R.L. Jones, R.Y. Wang, Iodine Status of the U.S. Population, National Health and Nutrition Examination Survey, 2005–2006 and 2007–2008. Thyroid 21, 419–427 (2011). https://doi.org/10.1089/thy.2010.0077 CrossRefPubMedGoogle Scholar
  64. 64.
    B. De Benoist, M. Andersson, I. Egli, B. Takkouche, H. Allen.: Iodine status worldwide: WHO Global Database on Iodine Deficiency. (2005) pp 9–16Google Scholar
  65. 65.
    L. Pagano, C. Mele, D. Arpaia, M.T. Samà, M. Caputo, S. Ippolito, C. Peirce, F. Prodam, G. Valente, G. Ciancia, G. Aimaretti, B. Biondi, How do etiological factors can explain the different clinical features of patients with differentiated thyroid cancer and their histopathological findings? Endocrine 56, 129–137 (2017).  https://doi.org/10.1007/s12020-016-0992-8 CrossRefPubMedGoogle Scholar
  66. 66.
    L. Davies, M.H.G. Welch, Increasing incidence of thyroid cancer in the united states, 1973-2002. J. Am. Med. Assoc. 295, 2164–2167 (2006).  https://doi.org/10.1001/jama.295.18.2164 CrossRefGoogle Scholar
  67. 67.
    J.P. Zevallos, C.M. Hartman, J.R. Kramer, E.M. Sturgis, E.Y. Chiao, Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: a study of the veterans affairs health care system. Cancer 121, 741–746 (2015).  https://doi.org/10.1002/cncr.29122 CrossRefPubMedGoogle Scholar
  68. 68.
    R. Udelsman, Y. Zhang, The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid 24, 472–479 (2014).  https://doi.org/10.1089/thy.2013.0257 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    L. Davies, H.G. Welch, Current Thyroid Cancer Trends in the United States. JAMA Otolaryngol. Neck Surg. 140, 317 (2014).  https://doi.org/10.1001/jamaoto.2014.1 CrossRefGoogle Scholar
  70. 70.
    L.G.T. Morris, A.G. Sikora, T.D. Tosteson, L. Davies, The increasing incidence of thyroid cancer: the influence of access to care. Thyroid 23, 885–891 (2013).  https://doi.org/10.1089/thy.2013.0045 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    R. Etzioni, D.F. Penson, J.M. Legler, D. di Tommaso, R. Boer, P.H. Gann, E.J. Feuer, Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J. Natl. Cancer Inst. 94, 981–990 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elena Salamanca-Fernández
    • 1
    • 2
    • 3
  • Miguel Rodriguez-Barranco
    • 1
    • 2
    • 3
    Email author
  • Yoe-Ling Chang-Chan
    • 1
    • 3
  • Daniel Redondo-Sánchez
    • 1
    • 3
  • Santiago Domínguez-López
    • 4
  • Eloísa Bayo
    • 5
  • Dariusz Narankiewicz
    • 6
  • José Expósito
    • 3
    • 7
  • María José Sánchez
    • 1
    • 2
    • 3
  1. 1.Andalusian School of Public Health (EASP)GranadaSpain
  2. 2.CIBER Epidemiology and Public Health (CIBERESP)GranadaSpain
  3. 3.Biosanitary Investigation Institute ibsGranadaSpain
  4. 4.University Hospital Virgen de las Nieves GranadaGranadaSpain
  5. 5.Radiation Oncology DepartmentUniversity Hospital Virgen MacarenaSevillaSpain
  6. 6.Preventive Medicine and Public Health DepartmentHospital Virgen de la Victoria of MálagaMálagaSpain
  7. 7.Radiotherapy and Oncology DepartmentUniversity Hospital Virgen de las Nieves GranadaGranadaSpain

Personalised recommendations