, Volume 62, Issue 2, pp 292–298 | Cite as

Water intake keeps type 2 diabetes away? Focus on copeptin

  • Giovanna MuscogiuriEmail author
  • Luigi Barrea
  • Giuseppe Annunziata
  • Martina Vecchiarini
  • Francesco Orio
  • Carolina Di Somma
  • Annamaria Colao
  • Silvia Savastano
Mini Review



In both diabetic subjects and animal models high levels of vasopressin (AVP) have beendetected. The relationship between AVP and glucose metabolism is mediated through several direct andindirect effects and most of them are still unknown.


We have reviewed 100 manuscripts retrieved from Cochrane Library, Embase and Pubmeddatabases in order to highlight a possible relationship between copeptin and type 2 diabetes and to provideinsights on the molecular mechanism that could explain this association.

Results and conclusions

AVP potentiates CRH action at pituitary level resulting in an increased ACTH secretion and in turn in an increased cortisol secretion that escapes the negative feedback loop. Further, AVP regulates insulin and glucagon secretion through V1b receptor and promotes hepatic glycogenolysis and gluconeogenesis through V1a receptor. In addition to worsen glucose metabolism, AVP has been reported to have a role in the pathogenesis of diabetic complications such as cardiovascular diseases, kidney and ocular complications. Due to the very low concentration of AVP in the blood, the small size and poor stability, the assay of AVP is very difficult to perform. Thus, copeptin, the stable C-terminal portion of the prepro-vasopressin peptide has been identified as an easier assay to be measured and that mirrors AVP activity. Although there are promising evidence that copeptin could be involved in the pathogenesis of type 2 diabetes, further studies need to demonstrate the importance of copeptin as clinical marker to predict glucose metabolism derangements.


Copeptin Type 2 diabetes Water Vasopressin Insulin resistance Insulin secretion 



Arginine vasopressin


Prevention of renal and vascular end-stage disease


Hypoxia-inducible factor-1


Coronary artery disease


Heart failure


Serum and glucocorticoid inducible kinase 1


Sodium glucose transporter 1


Author contributions

G.M. wrote the manuscript, L.G., G.A., M.V., and F.O. helped to draft the manuscript, C.D.S. and A.C. reviewed the manuscript, and S.S. conceived the manuscript

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R. Roussel, L. Fezeu, N. Bouby, B. Balkau, O. Lantieri, F. Alhenc-Gelas, M. Marre, L. Bankir, D.E.S.I.R. Study Group Low water intake and risk for new-onset hyperglycemia. Diabetes Care 34, 2551–2554 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    C. Taveau, C. Chollet, L. Waeckel, D. Desposito, D.G. Bichet, M.F. Arthus, C. Magnan, E. Philippe, V. Paradis, F. Foufelle, I. Hainault, S. Enhorning, G. Velho, R. Roussel, L. Bankir, O. Melander, N. Bouby, Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58, 1081–1090 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    G.L. Robertson, Thirst and vasopressin function in normal and disordered states of water balance. J. Lab. Clin. Med. 101, 351–371 (1983)PubMedGoogle Scholar
  4. 4.
    D.A. Hems, L.M. Rodrigues, P.D. Whitton, Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem. J. 172, 311–317 (1978)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    P.D. Whitton, L.M. Rodrigues, D.A. Hems, Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspension. Biochem. J. 176, 893–898 (1978)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    E.A. Abu-Basha, S. Yibchok-Anun, W.H. Hsu, Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism 51, 1184–1190 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    T. Aoyagi, J. Birumachi, M. Hiroyama, Y. Fujiwara, A. Sanbe, J. Yamauchi, A. Tanoue, Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology 148, 2075–2084 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    Y. Fujiwara, M. Hiroyama, A. Sanbe, T. Aoyagi, J. Birumachi, J. Yamauchi, G. Tsujimoto, A. Tanoue, Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J. Physiol. 584, 235–244 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    K. Nakamura, T. Aoyagi, M. Hiroyama, S. Kusakawa, R. Mizutani, A. Sanbe, J. Yamauchi, M. Kamohara, K. Momose, A. Tanoue, Both V(1A) and V(1B) vasopressin receptors deficiency result in impaired glucose tolerance. Eur. J. Pharmacol. 613, 182–188 (2009)CrossRefPubMedGoogle Scholar
  10. 10.
    R.L. Zerbe, F. Vinicor, G.L. Robertson, Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes 28, 503–508 (1979)CrossRefPubMedGoogle Scholar
  11. 11.
    D.P. Brooks, D.F. Nutting, J.T. Crofton, L. Share, Vasopressin in rats with genetic and streptozocin-induced diabetes. Diabetes 38, 54–57 (1989)CrossRefPubMedGoogle Scholar
  12. 12.
    S.S. Yi, I.K. Hwang, Y.N. Kim, I.Y. Kim, S.I. Pak, I.S. Lee, J.K. Seong, Y.S. Yoon, Enhanced expression of arginine vasopressin (Avp) in the hypothalamic paraventricular and supraoptic nuclei of type 2 diabetic rats. Neurochem. Res. 33, 833–841 (2008)CrossRefPubMedGoogle Scholar
  13. 13.
    N.G. Morgenthaler, J. Struck, C. Alonso, A. Bergmann, Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Balanescu, P. Kopp, M.B. Gaskill, N.G. Morgenthaler, C. Schindler, J. Rutishauser, Correlation of plasma copeptin and vasopressin concentration in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011)CrossRefPubMedGoogle Scholar
  15. 15.
    U. Saleem, M. Khaleghi, N.G. Morgenthaler, A. Bergmann, J. Struck, T.H. Mosley Jr., I.J. Kullo, Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J. Clin. Endocrinol. Metab. 94, 2558–2564 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    F.X. Zhu, H.L. Wu, K.S. Tu, J.X. Chen, M. Zhang, C. Shi, Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J. Diabetes Complicat. 30, 1566–1570 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    O. Melander, Vasopressin, from regulator to disease predictor for diabetes and cardiometabolic risk. Ann. Nutr. Metab. 68(Suppl 2), 24–28 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    S. Enhörning, T.J. Wang, P.M. Nilsson, P. Almgren, B. Hedblad, G. Berglund, J. Struck, N.G. Morgenthaler, A. Bergmann, E. Lindholm, L. Groop, V. Lyssenko, M. Orho-Melander, C. Newton-Cheh, O. Melander, Plasma copeptin and the risk of diabetes mellitus. Circulation 121, 2102–2108 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    V. Salomaa, A. Havulinna, O. Saarela, T. Zeller, P. Jousilahti, A. Jula, T. Muenzel, A. Aromaa, A. Evans, K. Kuulasmaa, S. Blankenberg, Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS ONE 5, e10100 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S.G. Wannamethee, P. Welsh, O. Papacosta, L. Lennon, P.H. Whincup, N. Sattar, Copeptin, insulin resistance, and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 100, 3332–3339 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J.D. Veldhuis, A. Sharma, F. Roelfsema, Age-dependent and gender-dependent regulation of hypothalamic-adrenocorticotropic-adrenal axis. Endocrinol. Metab. Clin. North. Am. 42, 201–225 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A. Abbasi, E. Corpeleijn, E. Meijer, D. Postmus, R.T. Gansevoort, R.O. Gans, J. Struck, H.L. Hillege, R.P. Stolk, G. Navis, S.J. Bakker, Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 55, 1963–1970 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    N.S. Stachenfeld, A.E. Splenser, W.L. Calzone, M.P. Taylor, D.L. Keefe, Sex differences in osmotic regulation of AVP and renal sodium handling. J. Appl. Physiol. 91, 1893–1901 (1985)CrossRefGoogle Scholar
  24. 24.
    E. Kajantie, D.I. Phillips, The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology 31, 151–178 (2006)CrossRefPubMedGoogle Scholar
  25. 25.
    W.R. Skowsky, L. Swan, P. Smith, Effects of sex steroid hormones on arginine vasopressin in intact and castrated male and female rats. Endocrinology 104, 105–108 (1979)CrossRefPubMedGoogle Scholar
  26. 26.
    J.T. Crofton, P.G. Baer, L. Share, D.P. Brooks, Vasopressin release in male and female rats: Effects of gonadectomy and treatment with gonadal steroid hormones. Endocrinology 117, 1195–1200 (1985)CrossRefPubMedGoogle Scholar
  27. 27.
    N.S. Stachenfeld, L. DiPietro, C.A. Kokoszka, C. Silva, D.L. Keefe, E.R. Nadel, Physiological variability of fluid-regulation hormones in young women. J. Appl. Physiol. 86, 1092–1096 (1999)CrossRefPubMedGoogle Scholar
  28. 28.
    W.F. Trigoso, J.M. Wesly, D.L. Meranda, Y. Shenker, Vasopressin and atrial natriuretic hormone response to hypertonic saline during the follicular and luteal phases of the menstrual cycle. Hum. Reprod. 11, 2392–2395 (1996)CrossRefPubMedGoogle Scholar
  29. 29.
    T.J. Vokes, N.M. Weiss, J. Schreiber, M.B. Gaskill, G.L. Robertson, Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am. J. Physiol. 254, R641–R647 (1988)PubMedGoogle Scholar
  30. 30.
    T.D.M. Williams, A. Edwards, K.M. Fairhall, I.C.A.F. Robinson, G.M. McGarrick, S.L. Lightman, Influence of endogenous and exogenous oestrogens on posterior pituitary secretion in women. Clin. Endocrinol. (Oxf.) 22, 589–596 (1985)CrossRefGoogle Scholar
  31. 31.
    M.I. Taskin, E. Bulbul, E. Adali, A.A. Hismiogulları, U. Inceboz, Circulating levels of obestatin and copeptin in obese and nonobese women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 189, 19–23 (2015)CrossRefPubMedGoogle Scholar
  32. 32.
    L. Bankir, P. Bardoux, M. Ahloulay, Vasopressin and diabetes mellitus. Nephron 87, 8–18 (2001)CrossRefPubMedGoogle Scholar
  33. 33.
    M. Bustamante, U. Hasler, O. Kotova, A.V. Chibalin, D. Mordasini, M. Rousselot, A. Vandewalle, P.Y. Martin, E. Féraille, Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am. J. Physiol. Ren. Physiol. 288, F334–F344 (2005)CrossRefGoogle Scholar
  34. 34.
    R. Roussel, R. El Boustany, N. Bouby, L. Potier, F. Fumeron, K. Mohammedi, B. Balkau, J. Tichet, L. Bankir, M. Marre, G. Velho, Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J. Clin. Endocrinol. Metab. 101, 2432–2439 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    C. Taveau, C. Chollet, L. Waeckel, D. Desposito, D.G. Bichet, M.F. Arthus, C. Magnan, E. Philippe, V. Paradis, F. Foufelle, I. Hainault, S. Enhorning, G. Velho, R. Roussel, L. Bankir, O. Melander, N. Bouby, Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58, 1081–1090 (2015)CrossRefPubMedGoogle Scholar
  36. 36.
    C.B. Wang, M. Zong, S.Q. Lu, Z. Tian, Plasma copeptin and functional outcome in patients with ischemic stroke and type 2 diabetes. J. Diabetes Complicat. 30, 1532–1536 (2016)CrossRefPubMedGoogle Scholar
  37. 37.
    M.I. Smaradottir, V. Ritsinger, V. Gyberg, A. Norhammar, P. Näsman, L.G. Mellbin, Copeptin in patients with acute myocardial infarction and newly detected glucose abnormalities–A marker of increased stress susceptibility? A report from the Glucose in Acute Myocardial Infarction cohort. Diab. Vasc. Dis. Res. 14, 69–76 (2017)CrossRefPubMedGoogle Scholar
  38. 38.
    L.G. Mellbin, L. Rydén, K. Brismar, N.G. Morgenthaler, J. Ohrvik, S.B. Catrina, Copeptin, IGFBP-1, and cardiovascular prognosis in patients with type 2 diabetes and acute myocardial infarction: a report from the DIGAMI 2 trial. Diabetes Care 33, 1604–1606 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    S. Enhörning, B. Hedblad, P.M. Nilsson, G. Engström, O. Melander, Copeptin is an independent predictor of diabetic heart disease and death. Am. Heart J. 169, 546–556 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Bar-Shalom, M.K. Poulsen, L.M. Rasmussen, A.C. Diederichsen, N.P. Sand, J.E. Henriksen, M. Nybo, Plasma copeptin as marker of cardiovascular disease in asymptomatic type 2 diabetes patients. Diab. Vasc. Dis. Res. 11, 448–450 (2014)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Thibonnier, M.K. Graves, M.S. Wagner, N. Chatelain, F. Soubrier, P. Corvol, H.F. Willard, X. Jeunemaitre, Study of V(1)-vascular vasopressin receptor gene microsatellite polymorphisms in human essential hypertension. J. Mol. Cell. Cardiol. 32, 557–564 (2000)CrossRefPubMedGoogle Scholar
  42. 42.
    P. Bjornstad, D.M. Maahs, T. Jensen, M.A. Lanaspa, R.J. Johnson, M. Rewers, J.K. Snell-Bergeon, Elevated copeptin is associated with atherosclerosis and diabetic kidney disease in adults with type 1 diabetes. J. Diabetes Complicat. 30, 1093–1096 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    W.E. Boertien, I.J. Riphagen, I. Drion, A. Alkhalaf, S.J. Bakker, K.H. Groenier, R.T. Gansevoort, Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia 56, 1680–1688 (2013)CrossRefPubMedGoogle Scholar
  44. 44.
    M. Pikkemaat, O. Melander, K. Bengtsson Boström, Association between copeptin and declining glomerular filtration rate in people with newly diagnosed diabetes. The Skaraborg Diabetes Register. J. Diabetes Complicat. 26, 1062–1065 (2015)CrossRefGoogle Scholar
  45. 45.
    G. Velho, R. El Boustany, G. Lefèvre, K. Mohammedi, F. Fumeron, L. Potier, L. Bankir, N. Bouby, S. Hadjadj, M. Marre, R. Roussel, Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 36, 3639–3645 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    P. Bardoux, D.G. Bichet, H. Martin, Y. Gallois, M. Marre, M.F. Arthus, M. Lonergan, N. Ruel, N. Bouby, L. Bankir, Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrol. Dial. Transplant. 18, 497–506 (2003)CrossRefPubMedGoogle Scholar
  47. 47.
    P. Bardoux, P. Bruneval, D. heudes, N. Bouby, L. Bankir, Diabetes-induced albuminuria: role of antidiuretic hormone as a revealed by chronic V2 receptor antagonism in rats. Nephrol. Dial. Transplant. 18, 1755–1763 (2003)CrossRefPubMedGoogle Scholar
  48. 48.
    E. Perrier, S. Vergne, A. Klein, M. Poupin, P. Rondeau, L. Le Bellego, L.E. Armstrong, F. Lang, J. Stookey, I. Tack, Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 109, 1678–1687 (2013)CrossRefPubMedGoogle Scholar
  49. 49.
    A. Tanoue, S. Ito, K. Honda, S. Oshikawa, Y. Kitagawa, T.A. Koshimizu, T. Mori, G. Tsujimoto, The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J. Clin. Invest. 113, 302–309 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    I. Tatsuno, D. Uchida, T. Tanaka, H. Koide, A. Shigeta, T. Ichikawa, H. Sasano, Y. Saito, Vasopressin responsiveness of subclinical Cushing’s syndrome due to ACTH-independent macronodular adrenocortical hyperplasia. Clin. Endocrinol. (Oxf.). 60, 192–200 (2004)CrossRefPubMedGoogle Scholar
  51. 51.
    J. Hensen, O. Hader, V. Bähr, W. Oelkers, Effects of incremental infusions of arginine vasopressin on adrenocorticotropin and cortisol secretion in man. J. Clin. Endocrinol. Metab. 66, 668–671 (1988)CrossRefPubMedGoogle Scholar
  52. 52.
    C. Rabadan-Diehl, G. Aguilera, Glucocorticoids increase vasopressin V1b receptor coupling to phospholipase C. Endocrinology 139, 3220–3226 (1998)CrossRefPubMedGoogle Scholar
  53. 53.
    G.L. Firestone, J.R. Giampaolo, B.A. O’Keeffe, Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell. Physiol. Biochem. 13, 1–12 (2003)CrossRefPubMedGoogle Scholar
  54. 54.
    F. Lang, A. Görlach, V. Vallon, Targeting SGK1 in diabetes. Expert Opin. Ther. Targets 13, 1303–1311 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    F. Lang, C. Böhmer, M. Palmada, G. Seebohm, N. Strutz-Seebohm, V. Vallon, (Patho)physiological significance of the serum-and glucocorticoid-inducible kinase isoform. Physiol. Rev. 86, 1151–1178 (2006)CrossRefPubMedGoogle Scholar
  56. 56.
    N. Di Pietro, V. Panel, S. Hayes, A. Bagattin, S. Meruvu, A. Pandolfi, L. Hugendubler, G. Fejes-Tóth, A. Naray-Fejes-Tóth, E. Mueller, Serum-and glucocorticoid-inducible kinase 1 (SGK1) regulates adipocyte differentiation via forkhead box O1. Mol. Endocrinol. 24, 370–380 (2010)CrossRefPubMedGoogle Scholar
  57. 57.
    L. Lecavalier, G. Bolli, J. Gerich, Glucagon-cortisol interactions on glucose turnover and lactate gluconeogenesis in normal humans. Am. J. Physiol. 258(4 Pt 1), E569–E575 (1990)PubMedGoogle Scholar
  58. 58.
    P.R. Bratusch-Marrain, R.A. DeFronzo, Impairment of insulin-mediated glucose metabolism by hyperosmolality in man. Diabetes 32, 1028–1034 (1983)CrossRefPubMedGoogle Scholar
  59. 59.
    A.M. O’Carroll, G.M. Howell, E.M. Roberts, S.J. Lolait, Vasopressin potentiates corticotropin-releasing hormone-induced insulin release from mouse pancreatic beta-cells. J. Endocrinol. 197, 231–239 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    M. Lu, S.P. Soltoff, G.C. Yaney, A.E. Boyd 3rd, The mechanisms underlying the glucose dependence of arginine vasopressin-induced insulin secretion in beta-cells. Endocrinology 132, 2141–2148 (1993)CrossRefPubMedGoogle Scholar
  61. 61.
    M. Hiroyama, T. Aoyagi, Y. Fujiwara, J. Birumachi, Y. Shigematsu, K. Kiwaki, R. Tasaki, F. Endo, A. Tanoue, Hypermetabolism of fat in V1a vasopressin receptor knockout mice. Mol. Endocrinol. 21, 247–258 (2007)CrossRefPubMedGoogle Scholar
  62. 62.
    Y. Fujiwara, M. Hiroyama, A. Sanbe, J. Yamauchi, G. Tsujimoto, A. Tanoue, Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice. J. Endocrinol. 192, 361–369 (2007)CrossRefPubMedGoogle Scholar
  63. 63.
    S. Masuki, M. Mori, Y. Tabara, T. Miki, A. Sakurai, M. Morikawa, K. Miyagawa, K. Higuchi, H. Nose, Shinshu University Genetic Research Consortium Vasopressin V1a receptor polymorphism and interval walking training effects in middle-aged and older people. Hypertension 55, 747–754 (2010)CrossRefPubMedGoogle Scholar
  64. 64.
    S. Enhörning, M. Leosdottir, P. Wallström, B. Gullberg, G. Berglund, E. Wirfält, O. Melander, Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am. J. Clin. Nutr. 89, 400–406 (2009)CrossRefPubMedGoogle Scholar
  65. 65.
    L. Bankir, S. Fernandes, P. Bardoux, N. Bouby, D.G. Bichet, Vasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans. J. Am. Soc. Nephrol. 16, 1920–1928 (2005)CrossRefPubMedGoogle Scholar
  66. 66.
    P. Bardoux, H. Martin, M. Ahloulay, F. Schmitt, N. Bouby, M.M. Trinh-Trang-Tan, L. Bankir, Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc. Natl Acad. Sci. USA 96, 10397–10402 (1999)CrossRefPubMedGoogle Scholar
  67. 67.
    N. Bouby, S. Bachmann, D. Bichet, L. Bankir, Effects of water on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am. J. Physiol. 258, F979–F979 (1990)Google Scholar
  68. 68.
    T. Sugiura, A. Yamauchi, H. Kitamura, Y. Matsuoka, M. Horio, E. Imai, M. Hori, High water intake ameliorates tubulointerstitial injury in rats with subtotal nephrectomy: possible role of TGF-beta. Kidney Int. 55, 1800–1810 (1999)CrossRefPubMedGoogle Scholar
  69. 69.
    W. Fenske, C. Wanner, B. Allolio, C. Drechsler, K. Blouin, J. Lilienthal, V. Krane, German Diabetes, Dialysis Study Investigators Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J. Am. Soc. Nephrol. 22, 782–790 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    M.F. Maturi, S.E. Martin, D. Markle, M. Maxwell, C.R. Burruss, E. Speir, R. Greene, Y.M. Ro, D. Vitale, M.V. Green, Coronary vasoconstriction induced by vasopressin. Production of 470 myocardial ischemia in dods by constriction of nondiseased small vessels. Circulation 83, 2111–2121 (1991)CrossRefPubMedGoogle Scholar
  71. 71.
    J. Fukuzawa, T. Haneda, K. Kikuchi, Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol. Cell. Biochem. 195, 93–98 (1999)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giovanna Muscogiuri
    • 1
    Email author
  • Luigi Barrea
    • 1
  • Giuseppe Annunziata
    • 1
  • Martina Vecchiarini
    • 2
  • Francesco Orio
    • 3
  • Carolina Di Somma
    • 4
  • Annamaria Colao
    • 1
  • Silvia Savastano
    • 1
  1. 1.Dipartimento di Medicina Clinica e Chirurgia, Sezione di EndocrinologiaUniversità Federico II di NapoliNaplesItaly
  2. 2.Medicina e ChirurgiaUniversità Federico II di NapoliNaplesItaly
  3. 3.Dipartimento di Scienze Motorie e del BenessereUniversità Partenope di NapoliNaplesItaly
  4. 4.IRCCS SDNNapoli Via Gianturco 113NaplesItaly

Personalised recommendations