Advertisement

Endocrine

, Volume 62, Issue 2, pp 351–360 | Cite as

The role of E and N-cadherin in the postoperative course of gonadotroph pituitary tumours

  • Kristin Astrid Berland ØysteseEmail author
  • Jens Petter Berg
  • Kjersti Ringvoll Normann
  • Manuela Zucknick
  • Olivera Casar-Borota
  • Jens Bollerslev
Endocrine Surgery
  • 105 Downloads

Abstract

Purpose

Gonadotroph tumours are the most abundant of the clinically silent pituitary tumours. There is a lack of reliable prognostic markers predicting their clinical course. Our aim was to determine the level of E-cadherin and N-cadherin in a cohort of clinically silent gonadotroph pituitary tumours, and compare them to the rate of reintervention.

Methods

Tumour tissue from primary surgery was retrospectively investigated and compared with clinical data. Immunohistochemical (N = 105) and real time-qPCR (N = 85) analyses for the levels of N-cadherin and the extra- and intracellular domains of E-cadherin were performed. The immunoreactive scores (IRS) and mRNA relative quantity were compared to the rate of reintervention.

Results

The tumours presented a high IRS for N-cadherin (Median 12 (IQR 12-12)) and almost no immunoreactivity for the extracellular domain of E-cadherin (Median 0 (IQR 0-0)). The membranous staining for the intracellular domain of E-cadherin varied (Median 6 (IQR 4-6). Reduced membranous expression of the intracellular domain of E-cadherin was associated with nuclear presence of the same domain. Nuclear staining for the intracellular domain of E-cadherin was associated with a lower rate of reintervention (p = 0.01).

Conclusion

We found that silent gonadotroph tumours presented high IRS for N-cadherin and low IRS for the extracellular domain of E-cadherin. A substantial proportion of the tumours presented nuclear staining for the intracellular domain of E-cadherin, accompanied by a reduced membranous expression of the intracellular domain of E-cadherin. Absence of nuclear staining for the intracellular domain of E-cadherin served as an independent predictor of reintervention.

Keywords

Pituitary adenomas PitNET EMT Cadherin Aggressiveness Gonadotroph pituitary tumours 

Notes

Funding

The study was funded by the South-Eastern Norway Regional Health Authority Award (recipient KABØ), grant number 2016 026.

Compliance with ethical standards

Conflict of interest

Jens Bollerslev is a member of the Endocrine advisory board. The remaining authors declare that they have no conflict of interest.

Ethical approval

The study was retrospective and did not include interventions involving human participants. The study was approved by the regional ethics committee and hospital authority.

Informed consent

Informed consent was obtained from all living patients included in the study.

Supplementary material

12020_2018_1679_MOESM1_ESM.docx (12 kb)
Online Resource 1
12020_2018_1679_MOESM2_ESM.pdf (80.3 mb)
Supplementary data

References

  1. 1.
    S.L. Asa, O. Casar-Borota, P. Chanson, E. Delgrange, P. Earls, S. Ezzat, A. Grossman, H. Ikeda, N. Inoshita, N. Karavitaki, M. Korbonits, E.R. Laws Jr., M.B. Lopes, N. Maartens, I.E. McCutcheon, O. Mete, H. Nishioka, G. Raverot, F. Roncaroli, W. Saeger, L.V. Syro, A. Vasiljevic, C. Villa, A. Wierinckx, J. Trouillas, From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr. Relat. Cancer 24(4), C5–c8 (2017).  https://doi.org/10.1530/erc-17-0004 CrossRefPubMedGoogle Scholar
  2. 2.
    T.A. Dolecek, J.M. Propp, N.E. Stroup, C. Kruchko, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro. Oncol. 14(Suppl 5), v1–v49 (2012).  https://doi.org/10.1093/neuonc/nos218 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Ezzat, S.L. Asa, W.T. Couldwell, C.E. Barr, W.E. Dodge, M.L. Vance, I.E. McCutcheon, The prevalence of pituitary adenomas: a systematic review. Cancer 101(3), 613–619 (2004).  https://doi.org/10.1002/cncr.20412 CrossRefPubMedGoogle Scholar
  4. 4.
    A. Tjornstrand, K. Gunnarsson, M. Evert, E. Holmberg, O. Ragnarsson, T. Rosen, H. Filipsson Nystrom, The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur. J. Endocrinol. / Eur. Fed. Endocr. Soc. 171(4), 519–526 (2014).  https://doi.org/10.1530/eje-14-0144 CrossRefGoogle Scholar
  5. 5.
    T.T. Agustsson, T. Baldvinsdottir, J.G. Jonasson, E. Olafsdottir, V. Steinthorsdottir, G. Sigurdsson, A.V. Thorsson, P.V. Carroll, M. Korbonits, R. Benediktsson, The epidemiology of pituitary adenomas in Iceland, 1955-2012: a nationwide population-based study. Eur. J. Endocrinol. / Eur. Fed. Endocr. Soc. 173(5), 655–664 (2015).  https://doi.org/10.1530/eje-15-0189 CrossRefGoogle Scholar
  6. 6.
    E. Ferrante, M. Ferraroni, T. Castrignano, L. Menicatti, M. Anagni, G. Reimondo, P. Del Monte, D. Bernasconi, P. Loli, M. Faustini-Fustini, G. Borretta, M. Terzolo, M. Losa, A. Morabito, A. Spada, P. Beck-Peccoz, A.G. Lania, Non-functioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur. J. Endocrinol. / Eur. Fed. Endocr. Soc. 155(6), 823–829 (2006).  https://doi.org/10.1530/eje.1.02298 CrossRefGoogle Scholar
  7. 7.
    A. Di Ieva, F. Rotondo, L.V. Syro, M.D. Cusimano, K. Kovacs, Aggressive pituitary adenomas—diagnosis and emerging treatments. Nat. Rev. Endocrinol. 10(7), 423–435 (2014).  https://doi.org/10.1038/nrendo.2014.64 CrossRefPubMedGoogle Scholar
  8. 8.
    O. Mete, S.L. Asa, Clinicopathological correlations in pituitary adenomas. Brain Pathol. 22(4), 443–453 (2012).  https://doi.org/10.1111/j.1750-3639.2012.00599.x CrossRefPubMedGoogle Scholar
  9. 9.
    S.L. Asa, A.M. Bamberger, B. Cao, M. Wong, K.L. Parker, S. Ezzat, The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J. Clin. Endocrinol. Metab. 81(6), 2165–2170 (1996).  https://doi.org/10.1210/jcem.81.6.8964846 CrossRefPubMedGoogle Scholar
  10. 10.
    M. Guarino, B. Rubino, G. Ballabio, The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39(3), 305–318 (2007).  https://doi.org/10.1080/00313020701329914 CrossRefPubMedGoogle Scholar
  11. 11.
    M. Diepenbruck, G. Christofori, Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol. 43, 7–13 (2016).  https://doi.org/10.1016/j.ceb.2016.06.002 CrossRefPubMedGoogle Scholar
  12. 12.
    E.C. Ferber, M. Kajita, A. Wadlow, L. Tobiansky, C. Niessen, H. Ariga, J. Daniel, Y. Fujita, A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J. Biol. Chem. 283(19), 12691–12700 (2008).  https://doi.org/10.1074/jbc.M708887200 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    M.J. Wheelock, Y. Shintani, M. Maeda, Y. Fukumoto, K.R. Johnson, Cadherin switching. J. Cell. Sci. 121, 727–735 (2008).  https://doi.org/10.1242/jcs.000455 CrossRefPubMedGoogle Scholar
  14. 14.
    B. Tsuchiya, Y. Sato, T. Kameya, I. Okayasu, K. Mukai, Differential expression of N-cadherin and E-cadherin in normal human tissues. Arch. Histol. Cytol. 69(2), 135–145 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Yamada, K. Ohyama, M. Taguchi, A. Takeshita, K. Morita, K. Takano, T. Sano, A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61, 580–584 (2007).  https://doi.org/10.1227/01.neu.0000290906.53685.79. discussion 584-585CrossRefPubMedGoogle Scholar
  16. 16.
    W. Zhou, Y. Song, H. Xu, K. Zhou, W. Zhang, J. Chen, M. Qin, H. Yi, J.A. Gustafsson, H. Yang, X. Fan, In nonfunctional pituitary adenomas, estrogen receptors and slug contribute to development of invasiveness. J. Clin. Endocrinol. Metab. 96(8), E1237–E1245 (2011).  https://doi.org/10.1210/jc.2010-3040 CrossRefPubMedGoogle Scholar
  17. 17.
    M.S. Elston, A.J. Gill, J.V. Conaglen, A. Clarkson, R.J. Cook, N.S. Little, B.G. Robinson, R.J. Clifton-Bligh, K.L. McDonald, Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J. Clin. Endocrinol. Metab. 94(4), 1436–1442 (2009).  https://doi.org/10.1210/jc.2008-2075 CrossRefPubMedGoogle Scholar
  18. 18.
    J. Torhorst, C. Bucher, J. Kononen, P. Haas, M. Zuber, O.R. Kochli, F. Mross, H. Dieterich, H. Moch, M. Mihatsch, O.P. Kallioniemi, G. Sauter, Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am. J. Pathol. 159(6), 2249–2256 (2001).  https://doi.org/10.1016/s0002-9440(10)63075-1 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    O. Casar-Borota, S.L. Fougner, J. Bollerslev, J.M. Nesland, KIT protein expression and mutational status of KIT gene in pituitary adenomas. Virchows Arch. 460(2), 171–181 (2012).  https://doi.org/10.1007/s00428-011-1185-8 CrossRefPubMedGoogle Scholar
  20. 20.
    O. Casar-Borota, K.A. Oystese, M. Sundstrom, L. Melchior, V. Popovic, A high-throughput analysis of the IDH1(R132H) protein expression in pituitary adenomas. Pituitary 19, 407–14 (2016).  https://doi.org/10.1007/s11102-016-0720-7 CrossRefPubMedGoogle Scholar
  21. 21.
    O. Casar-Borota, A. Heck, S. Schulz, J.M. Nesland, J. Ramm-Pettersen, T. Lekva, I. Alafuzoff, J. Bollerslev, Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J. Clin. Endocrinol. Metab. 98(11), E1730–E1739 (2013).  https://doi.org/10.1210/jc.2013-2145 CrossRefPubMedGoogle Scholar
  22. 22.
    W. Remmele, H.E. Stegner, [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Der Pathol. 8(3), 138–140 (1987)Google Scholar
  23. 23.
    M. Lee, A. Lupp, N. Mendoza, N. Martin, R. Beschorner, J. Honegger, J. Schlegel, T. Shively, E. Pulz, S. Schulz, F. Roncaroli, N.S. Pellegata, SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocr. Relat. Cancer 22(1), 111–119 (2015).  https://doi.org/10.1530/erc-14-0472 CrossRefPubMedGoogle Scholar
  24. 24.
    K.A. Oystese, O. Casar-Borota, K.R. Normann, M. Zucknick, J.P. Berg, J. Bollerslev, Estrogen receptor alpha, a sex-dependent predictor of aggressiveness in nonfunctioning pituitary adenomas: SSTR and sex hormone receptor distribution in NFPA. J. Clin. Endocrinol. Metab. 102(9), 3581–3590 (2017).  https://doi.org/10.1210/jc.2017-00792 CrossRefPubMedGoogle Scholar
  25. 25.
    K.R. Normann, K.A. Oystese, J.P. Berg, T. Lekva, J. Berg-Johnsen, J. Bollerslev, N.C. Olarescu, Selection and validation of reliable reference genes for RT-qPCR analysis in a large cohort of pituitary adenomas. Mol. Cell. Endocrinol. 437, 183–189 (2016).  https://doi.org/10.1016/j.mce.2016.08.030 CrossRefPubMedGoogle Scholar
  26. 26.
    N. Chauvet, N. Romano, A.C. Meunier, E. Galibert, P. Fontanaud, M.N. Mathieu, G. Osterstock, P. Osterstock, E. Baccino, V. Rigau, H. Loiseau, S. Bouillot-Eimer, A. Barlier, P. Mollard, N. Coutry, Combining cadherin expression with molecular markers discriminates invasiveness in growth hormone and prolactin pituitary adenomas. J. Neuroendocrinol. 28(2), 12352 (2016).  https://doi.org/10.1111/jne.12352 CrossRefPubMedGoogle Scholar
  27. 27.
    S. Ezzat, L. Zheng, D. Winer, S.L. Asa, Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol. Endocrinol. (Baltim., Md.) 20(11), 2965–2975 (2006).  https://doi.org/10.1210/me.2006-0223 CrossRefGoogle Scholar
  28. 28.
    D. Greenbaum, C. Colangelo, K. Williams, M. Gerstein, Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4(9), 117 (2003).  https://doi.org/10.1186/gb-2003-4-9-117 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    G. Berx, F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol. 1, a003129 (2009).  https://doi.org/10.1101/cshperspect.a003129 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    R.B. Hazan, G.R. Phillips, R.F. Qiao, L. Norton, S.A. Aaronson, Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell. Biol. 148(4), 779–790 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    M.T. Nieman, R.S. Prudoff, K.R. Johnson, M.J. Wheelock, N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell. Biol. 147(3), 631–644 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    L.D. Derycke, M.E. Bracke, N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int. J. Dev. Biol. 48(5-6), 463–476 (2004).  https://doi.org/10.1387/ijdb.041793ld CrossRefPubMedGoogle Scholar
  33. 33.
    W. Jia, J. Zhu, T.A. Martin, A. Jiang, A.J. Sanders, W.G. Jiang, E.M.T. Epithelial-mesenchymal Transition, Markers in human pituitary adenomas indicate a clinical course. Anticancer Res. 35(5), 2635–2643 (2015)PubMedGoogle Scholar
  34. 34.
    S.L. Fougner, T. Lekva, O.C. Borota, J.K. Hald, J. Bollerslev, J.P. Berg, The expression of E-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J. Clin. Endocrinol. Metab. 95(5), 2334–2342 (2010).  https://doi.org/10.1210/jc.2009-2197 CrossRefPubMedGoogle Scholar
  35. 35.
    J.A. Evang, J.P. Berg, O. Casar-Borota, T. Lekva, M.K. Kringen, J. Ramm-Pettersen, J. Bollerslev, Reduced levels of E-cadherin correlate with progression of corticotroph pituitary tumours. Clin. Endocrinol. 75(6), 811–818 (2011).  https://doi.org/10.1111/j.1365-2265.2011.04109.x CrossRefGoogle Scholar
  36. 36.
    K. Ito, I. Okamoto, N. Araki, Y. Kawano, M. Nakao, S. Fujiyama, K. Tomita, T. Mimori, H. Saya, Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18(50), 7080–7090 (1999).  https://doi.org/10.1038/sj.onc.1203191 CrossRefPubMedGoogle Scholar
  37. 37.
    S.L. Fougner, O. Casar-Borota, A. Heck, J.P. Berg, J. Bollerslev, Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin. Endocrinol. 76(1), 96–102 (2012).  https://doi.org/10.1111/j.1365-2265.2011.04163.x CrossRefGoogle Scholar
  38. 38.
    P. Bouris, S.S. Skandalis, Z. Piperigkou, N. Afratis, K. Karamanou, A.J. Aletras, A. Moustakas, A.D. Theocharis, N.K. Karamanos, Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix biology: journal of the International Society for. Matrix Biol. 43, 42–60 (2015).  https://doi.org/10.1016/j.matbio.2015.02.008 CrossRefPubMedGoogle Scholar
  39. 39.
    S.H. Park, L.W. Cheung, A.S. Wong, P.C. Leung, Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol. Endocrinol. 22(9), 2085–2098 (2008).  https://doi.org/10.1210/me.2007-0512 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    J.H. Kim, J.H. Lee, J.H. Lee, A.R. Hong, Y.J. Kim, Y.H. Kim, Endoscopic transsphenoidal surgery outcomes in 331 nonfunctioning pituitary adenoma cases after a single surgeon learning curve. World Neurosurg. 109, e409–e416 (2017).  https://doi.org/10.1016/j.wneu.2017.09.194 CrossRefPubMedGoogle Scholar
  41. 41.
    Y. Chen, C.D. Wang, Z.P. Su, Y.X. Chen, L. Cai, Q.C. Zhuge, Z.B. Wu, Natural history of postoperative nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Neuroendocrinology 96(4), 333–342 (2012).  https://doi.org/10.1159/000339823 CrossRefPubMedGoogle Scholar
  42. 42.
    L.J. Lewis-Tuffin, F. Rodriguez, C. Giannini, B. Scheithauer, B.M. Necela, J.N. Sarkaria, P.Z. Anastasiadis, Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS. One. 5, e13665 (2010).  https://doi.org/10.1371/journal.pone.0013665 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    U. Steinhusen, J. Weiske, V. Badock, R. Tauber, K. Bommert, O. Huber, Cleavage and shedding of E-cadherin after induction of apoptosis. J. Biol. Chem. 276(7), 4972–4980 (2001).  https://doi.org/10.1074/jbc.M006102200 CrossRefPubMedGoogle Scholar
  44. 44.
    M. Rosner, M. Hengstschlager, Letter to the Editor: human pluripotent stem cells release oncogenic soluble E-cadherin. Stem Cells 34(9), 2443–2446 (2016).  https://doi.org/10.1002/stem.2461 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kristin Astrid Berland Øystese
    • 1
    • 2
    • 3
    Email author
  • Jens Petter Berg
    • 2
    • 4
  • Kjersti Ringvoll Normann
    • 1
    • 2
    • 3
  • Manuela Zucknick
    • 5
  • Olivera Casar-Borota
    • 6
    • 7
    • 8
  • Jens Bollerslev
    • 1
    • 2
  1. 1.Section of Specialized Endocrinology, Department of EndocrinologyOslo University Hospital RikshospitaletOsloNorway
  2. 2.Faculty of MedicineUniversity of OsloOsloNorway
  3. 3.Research Institute for Internal Medicine (IMF), OUS RikshospitaletOsloNorway
  4. 4.Department of Medical BiochemistryOslo University HospitalOsloNorway
  5. 5.Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  6. 6.Department of Immunology, Genetics and PathologyUppsala University, Rudbeck LaboratoryUppsalaSweden
  7. 7.Department of Clinical Pathology and CytologyUppsala University Hospital, Rudbeck LaboratoryUppsalaSweden
  8. 8.Department of PathologyOslo University HospitalOsloNorway

Personalised recommendations