, Volume 62, Issue 1, pp 136–143 | Cite as

Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement

  • Marina DjurovicEmail author
  • Alberto M. Pereira
  • Johannes W. A. Smit
  • Olga Vasovic
  • Svetozar Damjanovic
  • Zvezdana Jemuovic
  • Dragan Pavlovic
  • Dragana Miljic
  • Sandra Pekic
  • Marko Stojanovic
  • Milika Asanin
  • Gordana Krljanac
  • Milan Petakov
Original Article



Intrinsic imperfections of thyroid hormone replacement therapy may affect long-term general well-being. In patients with Hashimoto thyroiditis (HT), cognitive functioning may be affected via altered thyroid hormones action as well as by the autoimmune process. The aim of this study was to evaluate cognitive function and quality of life (QoL) in patients on long-term levothyroxine replacement for HT in relation to thyroid function tests and TPO (thyroid-peroxidase) antibody (TPOAb) status.


Retrospective cross-sectional study.

Patients and measurements

One-hundred-and thirty patients with HT on long-term levothyroxine replacement and 111 euthyroid control subjects. Both groups were divided into two age subgroups, 20–49 years (N = 59 vs N = 79) and > 50 years (N = 71 vs N = 32). Evaluation included biochemical and neuropsychological tests, evaluating attention, global cognitive status, verbal and working memory, executive function, depression and anxiety, and quality of life. We used ANOVA and partial correlations to test for significant associations.


FT4 (free-thyroxine), FT3 (free-triiodothyronine) levels and FT3/FT4 ratio were not different between patients and controls. Mean TSH (thyroid-stimulating hormone) was normal in all subjects but significantly higher in the patients (20–49 yrs:3.64 ± 2.74 vs 1.93 ± 1.10, >50 yrs:3.93 ± 2.84 vs 1.91 ± 0.90). Antibodies (TgAb,TPOAb) were higher in patients. Global cognitive function (MMSE-Mini mental state examination), conceptual tracking (TMT-Trail Making Test:A/B), verbal divergent thinking (like Phonemic fluency test), and anxiety and depression scores were significantly worse in patients vs controls. QoL was impaired in patients. there was a significant negative correlation between antibodies (TPOAb, TgAb) and quality in life (total SF36 score).


Patients on long-term levothyroxine replacement show persistent impairments in both cognitive functioning and general well-being.


Hypothyroidism Cognitive function Quality of life L-thyroxine Long-term replacement Anti-TPO 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    J.A. Romijn, J.W.A. Smit, S.W.J. Lamberts, Intrinsic imperfections of endocrine replacement therapy. Eur. J. Endocrinol. 149, 91–97 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    M. Ritchie, B.B. Yeap, Thyroid hormone: influences on mood and cognition in adults. Maturitas 81, 266–275 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    T. Leyhe, K. Müssig, Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav. Immun. 41, 261–266 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Parle, L. Roberts, S. Wilson et al. Randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly subjects with subclinical hypothyroidism: The Birmingham Elderly thyroid study. J. Clin. Endocrinol. Metab. 95, 3623–3632 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    A.E. Budson, B.H. Price, Memory Dysfunction. N. Engl. J. Med. 352, 692–699 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    M. Bauer, T. Goetz, T. Glenn, P.C. Whybrow, The thyroid-brain interaction in thyroid disorders and mood disorders. J. Neuroendocrinol. 20, 1101–1114 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    S. Volpato, J.M. Guralnik, L.P. Fried, A.T. Remaley, A.R. Cappola, L.J. Launer, Serum thyroxine level and cognitive decline in euthyroid older women. Neurology 58, 1055–1061 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    N. Correia, S. Mullally, G. Cooke et al. Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 94, 3789–3797 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    E.M. Wekking, B.C. Appelhof, E. Fliers et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153, 747–753 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    M.H. Samuels, K.G. Schuff, N.E. Carlson, P. Carello, J.S. Janowsky, Health status, psychological symptoms, mood, and cognition in L-thyroxine-treated hypothyroid subjects. Thyroid 17, 249–258 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    V. Giannouli, K. Toulis, N. Syrmos, Cognitive function in Hashimoto’s thyroiditis under levothyroxine treatment. Hormones 13(3), 430–433 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    V. Giannouli, N. Syrmos, A 2-year preliminary longitudinal study of neuropsychological functioning in Hashimoto’s thyroiditis under levothyroxine treatment: only Trail Making Test is making a difference. Probl. Psychol. 21st Century 11(1), 15–21 (2017)Google Scholar
  13. 13.
    K. Müssig, A. Künle, A.L. Säuberlich et al. Thyroid peroxidase antibody positivity is associated with symptomatic distress in patients with Hashimoto’s thyroiditis. Brain Behav. Immun. 26, 559–563 (2012)CrossRefPubMedGoogle Scholar
  14. 14.
    G.P. Bianchi, V. Zaccheroni, E. Solaroli et al. Health-related quality of life in patients with thyroid disorders. Qual. Life Res. 13, 45–54 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    J. Ott, R. Promberger, F. Kober et al. Hashimoto’s thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case-control study in women undergoing thyroidectomy for benign goiter. Thyroid 21, 161–167 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    A. Engum, T. Bjoro, A. Mykletun, A.A. Dahl, Thyroid autoimmunity, depression and anxiety; are there any connections? An epidemiological study of a large population. J. Psychosom. Res. 59, 263–268 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    M. Kaya, T.F. Cermik, D. Bedel, Y. Kutucu, C. Tuglu, O.N. Yigitbasi, Assessment of alterations in regional cerebral blood flow in patients with hypothyroidism due to Hashimoto’s thyroiditis. J. Endocrinol. Invest. 30, 491–496 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Piga, A. Serra, L. Deiana et al. Brain perfusion abnormalities in patients with euthyroid autoimmune thyroiditis. Eur. J. Nucl. Med. Mol. Imaging 31, 1639–1644 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    P. Forti, V. Olivelli, E. Rietti et al. Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort. Gerontology 58, 41–49 (2012)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Pearce, G. Brabant, L. Duntas et al. 2013 ETA Guideline: Management of Subclinical Hypothyroidism. Eur. Thyroid J. 2, 215–228 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    M.D. Pavlovic. Diagnostic tests in Neuropsychology. (Kaligraf, Belgrade, 2003). in SerbianGoogle Scholar
  22. 22.
    D. Wechsler. WAIS-R. Wechsler Adult Intelligence Scale-Revised. Manual. (Psychological Corporation, San Antonio, 1981)Google Scholar
  23. 23.
    I. Bjelland, A.A. Dahl, T.T. Haug, D. Neckelmann, The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J. Psychosom. Res. 52, 69–77 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    J. Ware, K. Snow, M. Kosinski, B. Gandek. SF-36 Health Survey: Manual and Interpretation Guide. (The Health Institute, Boston), 1993)Google Scholar
  25. 25.
    H.J. Wouters, H.C. van Loon, M.M. van der Klauw et al. No effect of the Thr92Ala polymorphism of deiodinase-2 on thyroid hormone parameters, health-related quality of life, and cognitive functioning in a large population-based cohort study. Thyroid 27(2), 147–155 (2017)CrossRefPubMedGoogle Scholar
  26. 26.
    A.K. Parsaik, B. Singh, R. Roberts et al. Hypothyroidism and risk of mild cognitive impairment in elderly persons – a population based study. JAMA Neurol. 71(2), 201–207 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    H.F. Escobar-Morreale, J.I. Botella-Carretero, F. Escobar del Rey, Morreale de Escobar, G. Review: treatment of hypothyroidism with combinations of levothyroxine plus liothyronine. J. Clin. Endocrinol. Metab. 90, 4946–4954 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    J. Jonklaas, B. Davidson, S. Bhagat, S. Soldin, Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. JAMA 299(7), 769–777 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    M. Zarković, J. Cirić, B. Beleslin et al. Further studies on delineating thyroid-stimulating hormone (TSH) reference range. Horm. Metab. Res. 43, 970–976 (2011). Serbian Thyroid Study GroupCrossRefPubMedGoogle Scholar
  30. 30.
    E.L. Constant, S. Adam, X. Seron, R. Bruyer, A. Seghers, C. Daumerie, Anxiety and depression, attention and executive functions in hypothyroidism. J. Int. Neuropsychol. Soc. 11, 535–544 (2005)CrossRefPubMedGoogle Scholar
  31. 31.
    J.D. Davis, G. Tremont, Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol. 32, 49–65 (2007)PubMedGoogle Scholar
  32. 32.
    F.V. Schraml, P.W. Goslar, L. Baxter, L.L. Beason-Held, Thyroid stimulating hormone and cognition during severe, transient hypothyroidism. Neuro. Endocrinol. Lett. 32, 279–285 (2011)PubMedPubMedCentralGoogle Scholar
  33. 33.
    F.V. Schraml, L.L. Beason-Held, Technetium-99m Ethyl Cysteinate Dimer (ECD) cerebral accumulation and symptom and sign severity during hypothyroidism. Neuro. Endocrinol. Lett. 31, 161–167 (2010)PubMedPubMedCentralGoogle Scholar
  34. 34.
    J.W. Smith, A.T. Evans, B. Costall, J.W. Smythe, Thyroid hormones, brain function and cognition: a brief review. Neurosci. Biobehav. Rev. 26, 45–60 (2002)CrossRefPubMedGoogle Scholar
  35. 35.
    K.J. Miller, T.D. Parsons, P.C. Whybrow et al. Memory improvement with treatment of hypothyroidism. Int. J. Neurosci. 116, 895–906 (2006)CrossRefPubMedGoogle Scholar
  36. 36.
    V. Panicker, P. Saravanan, B. Vaidya et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    W.M. van der Deure, B.C. Appelhof, R.P. Peeters et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin. Endocrinol. 69, 804–811 (2008)CrossRefGoogle Scholar
  38. 38.
    M.G. Castagna, M. Dentice, S. Cantara et al. DIO2 Thr92Ala reduces deiodinase-2 activity and serum-T3 levels in thyroid-deficient patients. J. Clin. Endocrinol. Metab. 102(5), 1623–1630 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    M.H. Samuels, Cognitive Function in Subclinical Hypothyroidism. J. Clin. Endocrinol. Metab. 95, 3611–3613 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    R.T. De Jongh, P. Lips, N.M. van Schoor et al. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur. J. Endocrinol. 165, 545–554 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    M.H. Samuels, K.G. Schuff, N.E. Carlson, P. Carello, J.S. Janowsky, Health status, mood, and cognition in experimentally induced subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 2545–2551 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    D.J. Stott, N. Rodondi, P.M. Kearney et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med. 376(26), 2534–2544 (2017)CrossRefPubMedGoogle Scholar
  43. 43.
    R. Peeters, Subclinical hypothyroidism. N. Engl. J. Med. 376, 2556–2565 (2017)CrossRefPubMedGoogle Scholar
  44. 44.
    M. Pandrc, A. Ristic, V. Kostovski et al. The effect of early substitution on subclinical hypothyroidism on biochemical blood parameters and the quality of life. J. Med. Biochem. 36, 127–136 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    K.H. Winther, P. Cramon, T. Watt et al. Disease-specific as well as generic quality of life is widely impacted in autoimmune hypothyroidism and improves during the first six months of levothyroxine therapy. PLoS ONE 11(6), 1–12 (2016)CrossRefGoogle Scholar
  46. 46.
    J. Jonklaas, Persistent hypothyroid symptoms in a patient with a normal thyroid stimulating hormone level. Curr. Opin. Endocrinol. Diabetes Obes. 24, 356–363 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Kelderman-Bolk, T.J. Visser, J.P. Tijssen, A. Berghout, Quality of life in patients with primary hypothyroidism related to BMI. Eur. J. Endocrinol. 173, 507–515 (2015)CrossRefPubMedGoogle Scholar
  48. 48.
    P.R. Deshpande, S. Rajan, B.L. Sudeepthi, C.P. Abdul Nazir, Patient-reported outcomes: a new era in clinical research. Perspect. Clin. Res. 2, 137–144 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    L.A. Burmeister, M. Ganguli, H.H. Dodge, T. Toczek, S.T. DeKosty, R.D. Nebes, Hypothyroidism and cognition: preliminary evidence for specific defect in memory. Thyroid 11, 1177–1185 (2001)CrossRefPubMedGoogle Scholar
  50. 50.
    P. Saravanan, W.F. Chau, N. Roberts, K. Vedhara, R. Greenwood, C.M. Dayan, Psychological well-being in patients on ‘adequate’ doses of L-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. 57, 577–585 (2002)CrossRefGoogle Scholar
  51. 51.
    H.A. Uysal, M. Ayhan, Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. Kaohsiung J. Med. Sci. 32, 427–433 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marina Djurovic
    • 1
    Email author
  • Alberto M. Pereira
    • 2
  • Johannes W. A. Smit
    • 3
  • Olga Vasovic
    • 4
  • Svetozar Damjanovic
    • 1
  • Zvezdana Jemuovic
    • 1
  • Dragan Pavlovic
    • 5
  • Dragana Miljic
    • 1
  • Sandra Pekic
    • 1
  • Marko Stojanovic
    • 1
  • Milika Asanin
    • 6
  • Gordana Krljanac
    • 6
  • Milan Petakov
    • 1
  1. 1.Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Centre of SerbiaUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Endocrinology and Metabolic Diseases, and Centre for Endocrine Tumors LeidenLeiden University Medical CentreLeidenThe Netherlands
  3. 3.Department of Internal Medicine, Division of EndocrinologyRadboud University Medical CentreNijmegenThe Netherlands
  4. 4.Institute for Gerontology and Palliative Care, BelgradeBelgradeSerbia
  5. 5.Institute of Neurology, University Clinical Centre of SerbiaUniversity of BelgradeBelgradeSerbia
  6. 6.Clinic for Cardiology, University Clinical Centre of SerbiaUniversity of BelgradeBelgradeSerbia

Personalised recommendations