, Volume 62, Issue 1, pp 242–249 | Cite as

Evaluation of melatonin and AFMK levels in women with breast cancer

  • Tialfi Bergamin de Castro
  • Newton Antônio Bordin-Junior
  • Eduardo Alves de Almeida
  • Debora Aparecida Pires de Campos ZuccariEmail author
Original Article



Changes in the circadian rhythm may contribute to the development of cancer and are correlated with the high risk of breast cancer (BC) in night workers. Melatonin is a hormone synthesized by the pineal gland at night in the absence of light. Levels of melatonin and the metabolite of oxidative metabolism AFMK (acetyl-N-formyl-5-methoxykynurenamine), are suggested as potential biomarkers of BC risk. The aims of this study were to evaluate levels of melatonin and AFMK in women recently diagnosed with BC, women under adjuvant chemotherapy, and night-shift nurses, and compare them with healthy women to evaluate the relation of these compounds with BC risk.


Blood samples were collected from 47 women with BC, 9 healthy women, 10 healthy night shift nurses, and 6 patients under adjuvant chemotherapy. Compound levels were measured by mass spectrometry.

Results and conclusions

Our results showed that women with BC had lower levels of melatonin compared to control group women, and even lower in night-shift nurses and in patients under adjuvant chemotherapy. There was no significant difference of AFMK levels between the groups. In addition to this, high levels of melatonin and AFMK were related to patients with metastasis, and high levels of AFMK were related to the presence of lymph node-positive, tumor > 20 mm and patients who sleep with light at night. Our results showed a reduction of melatonin levels in BC patients, suggesting a relation with the disease, and in addition, point to the importance of melatonin supplementation in women that work at night to reduce the BC risk.


Breast cancer Circadian rhythmic Melatonin AFMK Blood level 



We are grateful for the grant #2015/02935-2, from São Paulo Research Foundation (FAPESP), grant #003/2015, FAPERP—Foundation to Support Research and Extension of São José do Rio Preto and Professor Luis Albeto Beraldo de Moraes for ceding Spectrometry Laboratory of Pharmaceutical Sciences Faculty of Mass Ribeirão Preto—University of São Paulo to perform the analysis and thank Dr. Eduardo José Crevelin for the support.

Author contributions

All authors contributed significantly to the performance of work.


This study was funded by FAPESP—São Paulo Research Foundation (# 2015/02935-2) and FAPERP—Foundation to Support Research and Extension of São José do Rio Preto (Proc. 003/2015). This work was supported by the São Paulo Research Foundation (FAPESP) (grant #2015/02935-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    R.G. Stevens, G.C. Brainard, D.E. Blask, S.W. Lockley, M.E. Motta, Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 64, 207 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    S.M. Hill, V.P. Belancio, R.T. Dauchy, S. Xiang, S. Brimer, L. Mao, A. Hauch, P.W. Lundberg, W. Summers, L. Yuan, T. Frasch, D.E. Blask, Melatonin: An inhibitor of breast cancer. Endocr. Relat. Cancer 22, R183 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Z. Xie, F. Chen, W.A. Li, X. Geng, C. Li, X. Meng, Y. Feng, W. Liu, F. Yu, A review of sleep disorders and melatonin. Neurol. Res. 6412, 1 (2017)Google Scholar
  4. 4.
    Ja.S. Neto, B.F. De Castro, Melatonina, ritmos biológicos e sono –uma revisão da literatura. Rev. Bras. Neurol. 44, 5 (2008)Google Scholar
  5. 5.
    R.J. Reiter, Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151 (1991)CrossRefPubMedGoogle Scholar
  6. 6.
    J. Espino, J.A. Pariente, A.B. Rodríguez, Oxidative stress and immunosenescence: Therapeutic effects of melatonin. Oxid. Med. Cell Longev. 2012, 1 (2012)CrossRefGoogle Scholar
  7. 7.
    V. Srinivasan, G. Maestroni, D. Cardinali, A. Esquifino, S.P. Perumal, S. Miller, Melatonin, immune function and aging. Immun. Ageing 5, 109 (2011)Google Scholar
  8. 8.
    G. Ferry, C. Ubeaud, P.-H. Lambert, S. Bertin, F. Cogé, P. Chomarat, P. Delagrange, B. Serkiz, J.-P. Bouchet, R.J.W. Truscott, J.A. Boutin, Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: Investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem. J. 388, 205 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    M.L. Dubocovich, P. Delagrange, D.N. Krause, D. Sugden, D.P. Cardinali, J. Olcese, Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmocological. Rev. 62, 343 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Jaworek, J. Szklarczyk, J. Bonior, M. Kot, M. Goralska, P. Pierzchalski, R.J. Reiter, U. Czech, R. Tomaszewska, Melatonin metabolite, N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK), attenuates acute pancreatitis in the rat: In vivo and in vitro studies. J. Physiol. Pharmacol. 67, 411 (2016)PubMedGoogle Scholar
  11. 11.
    M.A. Ciorba, Indoleamine 2,3 dioxygenase in intestinal disease. Curr. Opin. Gastroenterol. 29, 146 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    S.O. Silva, M.R. Rodrigues, S.R.Q. Carvalho, L.H. Catalani, A. Campa, V.F. Ximenes, Oxidation of melatonin and its catabolites, N1-acetyl-N 2-formyl-5-methoxykynuramine and N1-acetyl-5- methoxykynuramine, by activated leukocytes. J. Pineal Res. 37, 171 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    C.C. Maganhin, A.A.F. Carbonel, J.H. Hatty, L.F.P. Fuchs, I.S. de Oliveira-Júnior, M. de, J. Simões, R.S. Simões, E.C. Baracat, J.M. Soares Jr., Efeitos da melatonina no sistema genital feminino: Breve revisão. Rev. Assoc. Med. Bras. 54, 267 (2008)CrossRefPubMedGoogle Scholar
  14. 14.
    R.J. Reiter, J.C. Mayo, D.X. Tan, R.M. Sainz, M. Alatorre-Jimenez, and L. Qin. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 253, 253–278 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    G.B. Gelaleti, T.F. Borin, L.B. Maschio-Signorini, M.G. Moschetta, B.V. Jardim-Perassi, G.B. Calvinho, M.C. Facchini, A.M. Viloria-Petit, D.A.P. de Campos Zuccari, Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci. 183, 98 (2017)CrossRefPubMedGoogle Scholar
  16. 16.
    B.V. Jardim-Perassi, M.R. Lourenço, G.M. Doho, I.H. Grígolo, G.B. Gelaleti, L.C. Ferreira, T.F. Borin, M.G. Moschetta, D.A. Pires de Campos Zuccari, Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anticancer Agents Med. Chem. 16, 347 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    T.F. Borin, A.S. Arbab, G.B. Gelaleti, L.C. Ferreira, M.G. Moschetta, B.V. Jardim-Perassi, A. Iskander, N.R.S. Varma, A. Shankar, V.B. Coimbra, V.A. Fabri, J.G. de Oliveira, D.A.P. de C. Zuccari, Melatonin decreases breast cancer metastasis by modulating rho-associated kinase protein-1 expression. J. Pineal Res. 60, 3 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    E.S. Schernhammer, F. Laden, F.E. Speizer, W.C. Willett, D.J. Hunter, I. Kawachi, G.A. Colditz, Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J. Natl. Cancer Inst. 93, 1563 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    K. Straif, R. Baan, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard, A. Altieri, L. Benbrahim-Tallaa, V. Cogliano; WHO International Agency For Research on Cancer Monograph Working Group, Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 1065 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    D.M. Berson, F.A. Dunn, M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    M.H. Hastings, A.B. Reddy, E.S. Maywood, A Clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    R.M. Slominski, R.J. Reiter, N. Schlabritz-Loutsevitch, R.S. Ostrom, A.T. Slominski, Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 351, 152 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    M.P. Antoch, V.Y. Gorbacheva, O. Vykhovanets, I.A. Toshkov, R.V. Kondratov, A.A. Kondratova, C. Lee, A.Y. Nikitin, Disruption of the circadian clock due to the clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 7, 1197 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    M.A. Gauger, A. Sancar., Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 65, 6828 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    S. You, P.A. Wood, Y. Xiong, M. Kobayashi, J. Du-Quiton, W.J.M. Hrushesky, Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res. Treat. 91, 47 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    L. Tamarkin, D. Danforth, A. Lichter, E. DeMoss, M. Cohen, B. Chabner, M. Lippman, Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast. Cancer Sci. 216, 1003 (1982)Google Scholar
  27. 27.
    G.C. Brainard, J.P. Hanifin, J.M. Greeson, B. Byrne, G. Glickman, E. Gerner, M.D. Rollag, Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 21, 6405 (2001)CrossRefPubMedGoogle Scholar
  28. 28.
    G. Glickman, R. Levin, G.C. Brainard, Ocular input for human melatonin regulation: Relevance to breast cancer. Neuro. Endocrinol. Lett. 23(Suppl 2), 17 (2002)PubMedGoogle Scholar
  29. 29.
    J.R. Gaddy, M.D. Rollag, G.C. Brainard, Pupil size regulation of threshold of light-induced melatonin suppression. J. Clin. Endocrinol. Metab. 77, 1398 (1993)PubMedGoogle Scholar
  30. 30.
    C. Cajochen, S. Frey, D. Anders, J. Spati, M. Bues, A. Pross, R. Mager, A. Wirz-Justice, O. Stefani, Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J. Appl. Physiol. 110, 1432 (2011)CrossRefPubMedGoogle Scholar
  31. 31.
    J.M. Zeitzer, D.J. Dijk, R. Kronauer, E. Brown, C. Czeisler, Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 526(Pt 3), 695 (2000)CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    J.J. Gooley, K. Chamberlain, K.A. Smith, S.B.S. Khalsa, S.M.W. Rajaratnam, E. Van Reen, J.M. Zeitzer, C.A. Czeisler, S.W. Lockley, Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J. Clin. Endocrinol. Metab. 96, E463 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    E. Cordina-Duverger, F. Menegaux, A. Popa, S. Rabstein, V. Harth, B. Pesch, T. Brüning, L. Fritschi, D.C. Glass, J.S. Heyworth, T.C. Erren, G. Castaño-Vinyals, K. Papantoniou, A. Espinosa, M. Kogevinas, A. Grundy, J.J. Spinelli, K.J. Aronson, P. Guénel. Night shift work and breast cancer: A pooled analysis of population-based case–control studies with complete work history. Eur. J. Epidemiol. 1, 1–11 (2018)Google Scholar
  34. 34.
    C. Bartsch, H. Bartsch, U. Fuchs, T.H. Lippert, O. Bellmann, D. Gupta, Stage‐dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer 64, 426 (1989)CrossRefPubMedGoogle Scholar
  35. 35.
    S.M. Hill, C. Cheng, L. Yuan, L. Mao, R. Jockers, B. Dauchy, T. Frasch, D.E. Blask, Declining melatonin levels and MT1 receptor expression in aging rats is associated with enhanced mammary tumor growth and decreased sensitivity to melatonin. Breast Cancer Res. Treat. 127, 91 (2011)CrossRefPubMedGoogle Scholar
  36. 36.
    R.T. Dauchy, S. Xiang, L. Mao, S. Brimer, M.A. Wren, L. Yuan, M. Anbalagan, A. Hauch, T. Frasch, B.G. Rowan, D.E. Blask, S.M. Hill, Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 74, 4099 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    D.E. Blask, D.B. Pelletier, S.M. Hill, A. Lemus-Wilson, D.S. Grosso, S.T. Wilson, M.E. Wise, Pineal melatonin inhibition of tumor promotion in the N-nitroso-N-methylurea model of mammary carcinogenesis: Potential involvement of antiestrogenic mechanisms in vivo. J. Cancer Res. Clin. Oncol. 117, 526 (1991)CrossRefPubMedGoogle Scholar
  38. 38.
    P. Kubatka, B. Bojková, K. Môciková-Kalická, M. Mníchová-Chamilová, E. Adámeková, I. Ahlers, E. Ahlersová, M. Čermáková, Effects of tamoxifen and melatonin on mammary gland cancer induced by N-methyl-N-nitrosourea and by 7,12-dimethylbenz(a)anthracene, respectively, in female sprague-dawley rats. Folia Biol. (Praha) 47, 5 (2001)Google Scholar
  39. 39.
    N. do, N. Gonçalves, J. Colombo, J.R. Lopes, G.B. Gelaleti, M.G. Moschetta, N.M. Sonehara, E. Hellmén, C. de, F. Zanon, S.M. Oliani, D.A.P. de C. Zuccari, Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS ONE 11, e0150407 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Mao, L. Yuan, L.M. Slakey, F.E. Jones, M.E. Burow, S.M. Hill, Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res. 12, R107 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    P. Orendáš, P. Kubatka, B. Bojková, M. Kassayová, K. Kajo, D. Výbohová, P. Kružliak, M. Péč, M. Adamkov, A. Kapinová, K. Adamicová, V. Sadloňová, M. Chmelová, N. Stollárová, Melatonin potentiates the anti-tumour effect of pravastatin in rat mammary gland carcinoma model. Int. J. Exp. Pathol. 95, 401 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    K.M. Eck, L. Yuan, L. Duffy, P.T. Ram, S. Ayettey, I. Chen, C.S. Cohn, J.C. Reed, S.M. Hill, A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells. Br. J. Cancer 77, 2129 (1998)CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    K. Melancon, Q. Cheng, T.L. Kiefer, J. Dai, L. Lai, C. Dong, L. Yuan, A. Collins, A. Thiyagarajah, S. Long, S.M. Hill, Regression of NMU-induced mammary tumors with the combination of melatonin and 9-cis-retinoic acid. Cancer Lett. 227, 39 (2005)CrossRefPubMedGoogle Scholar
  44. 44.
    S.S. Moselhy, M.A.B. Al mslmani, Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7,12 dimethyl(a)benzanthracene in sprague dawely female rats. Mol. Cell. Biochem. 319, 175 (2008)CrossRefPubMedGoogle Scholar
  45. 45.
    E.A. De Almeida, P. Di Mascio, T. Harumi, D.W. Spence, A. Moscovitch, R. Hardeland, D.P. Cardinali, G.M. Brown, S.R. Pandi-Perumal, Measurement of melatonin in body fluids: Standards, protocols and procedures. Child’s Nerv. Syst. 27, 879 (2011)CrossRefGoogle Scholar
  46. 46.
    D. Acuña-Castroviejo, G. Escames, C. Venegas, M.E. Díaz-Casado, E. Lima-Cabello, L.C. López, S. Rosales-Corral, D.-X. Tan, R.J. Reiter, Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. 71, 2997 (2014)CrossRefPubMedGoogle Scholar
  47. 47.
    W.H. Talib, S. Saleh, Propionibacterium acnes augments antitumor, anti-angiogenesis and immunomodulatory effects of melatonin on breast cancer implanted in mice. PLoS ONE 10, e0124384 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    W. Ren, G. Liu, S. Chen, J. Yin, J. Wang, B. Tan, G. Wu, F.W. Bazer, Y. Peng, T. Li, R.J. Reiter, Y. Yin, Melatonin signaling in T Cells: functions and applications. J. Pineal Res. 62, 1 (2017)CrossRefGoogle Scholar
  49. 49.
    A. González-González, M.D. Mediavilla, E.J. Sánchez-Barceló., Melatonin, A molecule for reducing breast cancer risk. Molecules 23, 336 (2018)CrossRefGoogle Scholar
  50. 50.
    P.J. Lardone, A. Carrillo-Vico, M.C. Naranjo, B. De Felipe, A. Vallejo, M. Karasek, J.M. Guerrero, Melatonin synthesized by jurkat human leukemic T cell line is implicated in IL-2 production. J. Cell. Physiol. 206, 273 (2006)CrossRefPubMedGoogle Scholar
  51. 51.
    H. Zhang, Y. Zhang., Melatonin: A well‐documented antioxidant with conditional pro‐oxidant actions. J. Pineal Res. 57, 131 (2014)CrossRefPubMedGoogle Scholar
  52. 52.
    Y. Chen, M. Leon-Ponte, S.C. Pingle, P.J. O’Connell, G.P. Ahern, T lymphocytes possess the machinery for 5-HT synthesis, storage, degradation and release. Acta Physiol. (Oxf.). 213, 860 (2015)CrossRefPubMedGoogle Scholar
  53. 53.
    F. Fallarino, U. Grohmann, K.W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M.L. Belladonna, M.C. Fioretti, M.-L. Alegre, P. Puccetti, Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206 (2003)CrossRefPubMedGoogle Scholar
  54. 54.
    P. Terness, T.M. Bauer, L. Röse, C. Dufter, A. Watzlik, H. Simon, G. Opelz, Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: Mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447 (2002)CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    G.C. Prendergast, C. Smith, S. Thomas, L. Mandik-Nayak, L. Laury-Kleintop, R. Metz, A.J. Muller, Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63, 721 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    B. Heng, C.K. Lim, D.B. Lovejoy, A. Bessede, L. Gluch, G.J. Guillemin, Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 7, 6506 (2016)PubMedGoogle Scholar
  57. 57.
    D.E. Carvajal-Hausdorf, N. Mani, V. Velcheti, K.A. Schalper, D.L. Rimm, Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J. Immunother. Cancer 5, 81 (2017)CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    A. Leja-Szpak, P. Pierzchalski, M. Goralska, K. Nawrot-Porabka, J. Bonior, P. Link-Lenczowski, M. Jastrzebska, J. Jaworek, Kynuramines induce overexpression of heat shock proteins in pancreatic cancer cells via 5-hydroxytryptamine and MT1/MT2 receptors. J. Physiol. Pharmacol. 66, 711 (2015)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.São Paulo State University - UNESPSão José do Rio PretoBrazil
  2. 2.São José do Rio Preto Medical School - FAMERPSão José do Rio PretoBrazil
  3. 3.Regional University of Blumenau Foundation - FURBBlumenauBrazil

Personalised recommendations