, Volume 61, Issue 2, pp 216–223 | Cite as

Molecular evaluation of a sporadic paraganglioma with concurrent IDH1 and ATRX mutations

  • Jing Zhang
  • Jingjing Jiang
  • Yu Luo
  • Xiaomu Li
  • Zhiqiang Lu
  • Yujun Liu
  • Jie Huang
  • Yingyong Hou
  • Ying Pang
  • Mitchell Yee Fong Sun
  • Tracy S. Wang
  • Douglas B. Evans
  • Karel Pacak
  • Zhengping Zhuang
  • Xin GaoEmail author
Endocrine Genetics/Epigenetics



Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors of neural crest origin. Germline or somatic mutations of numerous genes have been implicated in the pathogenesis of PPGLs, including the isocitrate dehydrogenase 1 (IDH1) gene and alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene. Although concurrent IDH1 and ATRX mutations are frequently seen in gliomas, they have never been reported together in PPGLs. The aim of this study was to characterize one paraganglioma with concurrent IDH1 and ATRX mutations identified by whole exome sequencing.


Leukocyte and tumor DNA were used for whole exome sequencing and Sanger sequencing. 2-hydroxyglurarate level and the global DNA methylation status in the tumor were measured. ATRX’s cDNA transcripts were analyzed. Tyrosine hydroxylase (TH), HIF1α and ATRX staining, as well as telomere-specific FISH was also performed.


The presence of a somatic IDH1 (c.394C>T, p.R132C) mutation and a concurrent somatic ATRX splicing mutation (c.4318-2A>G) in the current case was confirmed. Dramatic accumulation of 2-hydroxyglutarate was detected in the paraganglioma without the global DNA hypermethylation, and pseudohypoxia was also activated. Importantly, immunohistochemistry revealed negative TH staining in the tumor and the first exon region of TH gene was hypermethylated resulting in normal plasma metanephrines. The splicing ATRX mutation resulted in two transcripts, causing frameshifts. Immunohistochemistry revealed scarce ATRX staining in the tumor. Alternative lengthening of telomeres (ALT) was detected by FISH.


This case represents the first concurrence of IDH1 and ATRX mutations in PPGLs. Although relatively rare, a somatic R132C mutation of IDH1 might play a role in a small subset of sporadic PPGLs.


Paraganglioma IDH1 ATRX Somatic mutations 



We thank Dr. Dan Ye from Institute of Biomedical Sciences Fudan University and Dr. Jingmin Yang from Shanghai WeHealth BioMedical Technology Co., Ltd for the technical assistance.


This study was funded by the National Natural Science Foundation of China (Grant number: 81471016) and, in part, by the Intramural Research Program of the NIHNCI, NINDS, and Eunice Kennedy Shriver NICHD.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration, and its later amendments or comparable ethical standards. The study was approved by the institutional review board of Zhongshan Hospital, Fudan University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2018_1617_MOESM1_ESM.docx (23 kb)
Supplementary tables


  1. 1.
    L. Fishbein, I. Leshchiner, V. Walter, L. Danilova, A.G. Robertson, A.R. Johnson, T.M. Lichtenberg, B.A. Murray, H.K. Ghayee, T. Else, S. Ling, S.R. Jefferys, A.A. de Cubas, B. Wenz, E. Korpershoek, A.L. Amelio, L. Makowski, W.K. Rathmell, A.P. Gimenez-Roqueplo, T.J. Giordano, S.L. Asa, A.S. Tischler; N. Cancer Genome Atlas Research, K. Pacak, K.L. Nathanson, M.D. Wilkerson, Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31, 181–193 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    D.W. Parsons, S. Jones, X. Zhang, J.C. Lin, R.J. Leary, P. Angenendt, P. Mankoo, H. Carter, I.M. Siu, G.L. Gallia, A. Olivi, R. McLendon, B.A. Rasheed, S. Keir, T. Nikolskaya, Y. Nikolsky, D.A. Busam, H. Tekleab, L.A. Diaz Jr., J. Hartigan, D.R. Smith, R.L. Strausberg, S.K. Marie, S.M. Shinjo, H. Yan, G.J. Riggins, D.D. Bigner, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V.E. Velculescu, K.W. Kinzler, An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    E.R. Mardis, L. Ding, D.J. Dooling, D.E. Larson, M.D. McLellan, K. Chen, D.C. Koboldt, R.S. Fulton, K.D. Delehaunty, S.D. McGrath, L.A. Fulton, D.P. Locke, V.J. Magrini, R.M. Abbott, T.L. Vickery, J.S. Reed, J.S. Robinson, T. Wylie, S.M. Smith, L. Carmichael, J.M. Eldred, C.C. Harris, J. Walker, J.B. Peck, F. Du, A.F. Dukes, G.E. Sanderson, A.M. Brummett, E. Clark, J.F. McMichael, R.J. Meyer, J.K. Schindler, C.S. Pohl, J.W. Wallis, X. Shi, L. Lin, H. Schmidt, Y. Tang, C. Haipek, M.E. Wiechert, J.V. Ivy, J. Kalicki, G. Elliott, R.E. Ries, J.E. Payton, P. Westervelt, M.H. Tomasson, M.A. Watson, J. Baty, S. Heath, W.D. Shannon, R. Nagarajan, D.C. Link, M.J. Walter, T.A. Graubert, J.F. DiPersio, R.K. Wilson, T.J. Ley, Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    L. Dang, D.W. White, S. Gross, B.D. Bennett, M.A. Bittinger, E.M. Driggers, V.R. Fantin, H.G. Jang, S. Jin, M.C. Keenan, K.M. Marks, R.M. Prins, P.S. Ward, K.E. Yen, L.M. Liau, J.D. Rabinowitz, L.C. Cantley, C.B. Thompson, M.G. Vander Heiden, S.M. Su, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    M.E. Figueroa, O. Abdel-Wahab, C. Lu, P.S. Ward, J. Patel, A. Shih, Y. Li, N. Bhagwat, A. Vasanthakumar, H.F. Fernandez, M.S. Tallman, Z. Sun, K. Wolniak, J.K. Peeters, W. Liu, S.E. Choe, V.R. Fantin, E. Paietta, B. Lowenberg, J.D. Licht, L.A. Godley, R. Delwel, P.J. Valk, C.B. Thompson, R.L. Levine, A. Melnick, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang, S.H. Kim, S. Ito, C. Yang, P. Wang, M.T. Xiao, L.X. Liu, W.Q. Jiang, J. Liu, J.Y. Zhang, B. Wang, S. Frye, Y. Zhang, Y.H. Xu, Q.Y. Lei, K.L. Guan, S.M. Zhao, Y. Xiong, Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    J. Gaal, N. Burnichon, E. Korpershoek, I. Roncelin, J. Bertherat, P.F. Plouin, R.R. de Krijger, A.P. Gimenez-Roqueplo, W.N. Dinjens, Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 95, 1274–1278 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    L. Yao, M. Barontini, B. Niederle, M. Jech, R. Pfragner, P.L. Dahia, Mutations of the metabolic genes IDH1, IDH2, and SDHAF2 are not major determinants of the pseudohypoxic phenotype of sporadic pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 95, 1469–1472 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    L.A. Watson, H. Goldberg, N.G. Berube, Emerging roles of ATRX in cancer. Epigenomics 7, 1365–1378 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    C.M. Heaphy, R.F. de Wilde, Y. Jiao, A.P. Klein, B.H. Edil, C. Shi, C. Bettegowda, F.J. Rodriguez, C.G. Eberhart, S. Hebbar, G.J. Offerhaus, R. McLendon, B.A. Rasheed, Y. He, H. Yan, D.D. Bigner, S.M. Oba-Shinjo, S.K. Marie, G.J. Riggins, K.W. Kinzler, B. Vogelstein, R.H. Hruban, A. Maitra, N. Papadopoulos, A.K. Meeker, Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Y. Jiao, C. Shi, B.H. Edil, R.F. de Wilde, D.S. Klimstra, A. Maitra, R.D. Schulick, L.H. Tang, C.L. Wolfgang, M.A. Choti, V.E. Velculescu, L.A. Diaz Jr., B. Vogelstein, K.W. Kinzler, R.H. Hruban, N. Papadopoulos, DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    X. Chen, A. Bahrami, A. Pappo, J. Easton, J. Dalton, E. Hedlund, D. Ellison, S. Shurtleff, G. Wu, L. Wei, M. Parker, M. Rusch, P. Nagahawatte, J. Wu, S. Mao, K. Boggs, H. Mulder, D. Yergeau, C. Lu, L. Ding, M. Edmonson, C. Qu, J. Wang, Y. Li, F. Navid, N.C. Daw, E.R. Mardis, R.K. Wilson, J.R. Downing, J. Zhang, M.A. Dyer; St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome, P., Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    L. Fishbein, S. Khare, B. Wubbenhorst, D. DeSloover, K. D’Andrea, S. Merrill, N.W. Cho, R.A. Greenberg, T. Else, K. Montone, V. LiVolsi, D. Fraker, R. Daber, D.L. Cohen, K.L. Nathanson, Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat. Commun. 6, 6140 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    C.M. Heaphy, A.P. Subhawong, S.M. Hong, M.G. Goggins, E.A. Montgomery, E. Gabrielson, G.J. Netto, J.I. Epstein, T.L. Lotan, W.H. Westra, M. Shih Ie, C.A. Iacobuzio-Donahue, A. Maitra, Q.K. Li, C.G. Eberhart, J.M. Taube, D. Rakheja, R.J. Kurman, T.C. Wu, R.B. Roden, P. Argani, A.M. De Marzo, L. Terracciano, M. Torbenson, A.K. Meeker, Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    N. Cancer Genome Atlas Research, D.J. Brat, R.G. Verhaak, K.D. Aldape, W.K. Yung, S.R. Salama et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Ma, B. Jiang, W. Deng, Z.K. Gu, F.Z. Wu, T. Li, Y. Xia, H. Yang, D. Ye, Y. Xiong, K.L. Guan, D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget 6, 8606–8620 (2015)PubMedPubMedCentralGoogle Scholar
  17. 17.
    S. Moran, C. Arribas, M. Esteller, Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389–399 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    T. Aranyi, B.A. Faucheux, O. Khalfallah, G. Vodjdani, N.F. Biguet, J. Mallet, R. Meloni, The tissue-specific methylation of the human tyrosine hydroxylase gene reveals new regulatory elements in the first exon. J. Neurochem. 94, 129–139 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    T. Watanabe, S. Nobusawa, P. Kleihues, H. Ohgaki, IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 174, 1149–1153 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    H. Noushmehr, D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P. Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, R.G. Verhaak, K.A. Hoadley, D.N. Hayes, C.M. Perou, H.K. Schmidt, L. Ding, R.K. Wilson, D. Van Den Berg, H. Shen, H. Bengtsson, P. Neuvial, L.M. Cope, J. Buckley, J.G. Herman, S.B. Baylin, P.W. Laird, K. Aldape; N. Cancer Genome Atlas Research, Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 17, 510–522 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    L. Remacha, I. Comino-Mendez, S. Richter, L. Contreras, M. Curras-Freixes, G. Pita, R. Leton, A. Galarreta, R. Torres-Perez, E. Honrado, S. Jimenez, L. Maestre, S. Moran, M. Esteller, J. Satrustegui, G. Eisenhofer, M. Robledo, A. Cascon, Targeted exome sequencing of krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin. Cancer Res. 23, 6315–6324 (2017)CrossRefPubMedGoogle Scholar
  22. 22.
    R. Su, L. Dong, C. Li, S. Nachtergaele, M. Wunderlich, Y. Qing, X. Deng, Y. Wang, X. Weng, C. Hu, M. Yu, J. Skibbe, Q. Dai, D. Zou, T. Wu, K. Yu, H. Weng, H. Huang, K. Ferchen, X. Qin, B. Zhang, J. Qi, A.T. Sasaki, D.R. Plas, J.E. Bradner, M. Wei, G. Marcucci, X. Jiang, J.C. Mulloy, J. Jin, C. He, J. Chen, R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell 172, 90–105 e123 (2018)CrossRefPubMedGoogle Scholar
  23. 23.
    J. Crona, D. Taieb, K. Pacak, New perspectives on pheochromocytoma and paraganglioma: toward a molecular classification. Endocr. Rev. 38, 489–515 (2017)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Gruber, M.C. Simon, Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr. Opin. Hematol. 13, 169–174 (2006)CrossRefPubMedGoogle Scholar
  25. 25.
    K. Okuse, I. Matsuoka, K. Kurihara, Tissue-specific methylation occurs in the essential promoter element of the tyrosine hydroxylase gene. Mol. Brain Res. 46, 197–207 (1997)CrossRefPubMedGoogle Scholar
  26. 26.
    R.A. Toledo, Y. Qin, Z.M. Cheng, Q. Gao, S. Iwata, G.M. Silva, M.L. Prasad, I.T. Ocal, S. Rao, N. Aronin, M. Barontini, J. Bruder, R.L. Reddick, Y. Chen, R.C. Aguiar, P.L. Dahia, Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. Clin. Cancer Res. 22, 2301–2310 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    C.B. Harley, A.B. Futcher, C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990)CrossRefPubMedGoogle Scholar
  28. 28.
    A.J. Cesare, R.R. Reddel, Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    R.L. Flynn, K.E. Cox, M. Jeitany, H. Wakimoto, A.R. Bryll, N.J. Ganem, F. Bersani, J.R. Pineda, M.L. Suva, C.H. Benes, D.A. Haber, F.D. Boussin, L. Zou, Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jing Zhang
    • 1
    • 2
  • Jingjing Jiang
    • 1
    • 2
  • Yu Luo
    • 1
  • Xiaomu Li
    • 1
  • Zhiqiang Lu
    • 1
  • Yujun Liu
    • 3
  • Jie Huang
    • 4
  • Yingyong Hou
    • 4
  • Ying Pang
    • 5
  • Mitchell Yee Fong Sun
    • 6
  • Tracy S. Wang
    • 7
  • Douglas B. Evans
    • 7
  • Karel Pacak
    • 5
  • Zhengping Zhuang
    • 8
  • Xin Gao
    • 1
    • 2
    Email author
  1. 1.Department of Endocrinology and Metabolism, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Fudan Institute for Metabolic DiseasesFudan UniversityShanghaiChina
  3. 3.Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
  4. 4.Department of Pathology, Zhongshan HospitalFudan UniversityShanghaiChina
  5. 5.Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUSA
  6. 6.College of Liberal Arts and SciencesUniversity of Illinois at ChicagoChicagoUSA
  7. 7.Department of SurgeryMedical College of WisconsinMilwaukeeUSA
  8. 8.Surgical Neurology Branch, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations