Advertisement

Endocrine

, Volume 62, Issue 1, pp 129–135 | Cite as

Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal

  • Elia Angelino
  • Simone Reano
  • Alessandro Bollo
  • Michele Ferrara
  • Marilisa De Feudis
  • Hana Sustova
  • Emanuela Agosti
  • Sara Clerici
  • Flavia Prodam
  • Catherine-Laure Tomasetto
  • Andrea GrazianiEmail author
  • Nicoletta FilighedduEmail author
Original Article

Abstract

Purpose

Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration.

Methods

To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl−/− mice upon CTX-induced injury.

Results

Although muscles from Ghrl−/− mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl−/− mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration.

Conclusions

Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.

Keywords

Ghrelin knockout Skeletal muscle regeneration Satellite cells Self-renewal 

Notes

Acknowledgements

This study was supported by research grants from the Muscular Dystrophy Association (grant MDA294617 to NF and AG), Association Française contre les Myopathies (Grant 16437 to AG), AIRC (to AG), and Fondazione Cariplo (Grant 2015_0634 to NF).

Compliance with ethical standards

Conflict of interest

A.G. is a consultant to Helsinn (Lugano, Switzerland), N.F. is a consultant to Lyric Pharmaceuticals (South San Francisco, CA, USA).

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Animal experiments were performed according to procedures approved by the Institutional Animal Care and Use Committee at the University of Piemonte Orientale.

Supplementary material

12020_2018_1606_MOESM1_ESM.jpg (438 kb)
Supplementary Figure

References

  1. 1.
    P. Seale, L.A. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss, M.A. Rudnicki, Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    U. Gurriarán-Rodríguez, I. Santos-zas, O. Al-massadi, C.S. Mosteiro, R. Nogueiras, A.B. Crujeiras, L.M. Seoane, J. Señarís, R. Gallego, F. Felipe, Y. Pazos, J.P. Camiña, The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. J. Biol. Chem. 287, 38379–38389 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Reano, E. Angelino, M. Ferrara, V. Malacarne, H. Sustova, O. Sabry, E. Agosti, S. Clerici, G. Ruozi, L. Zentilin, F. Prodam, S. Geuna, M. Giacca, A. Graziani, N. Filigheddu, Unacylated ghrelin enhances satellite cell function and relieves the dystrophic phenotype in Duchenne muscular dystrophy mdx model. Stem Cells 35, 1733–1746 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    U. Gurriarán-Rodríguez, I. Santos-zas, J. González-sánchez, D. Beiroa, V. Moresi, C.S. Mosteiro, W. Lin, J.E. Viñuela, J. Señarís, T. García-caballero, F.F. Casanueva, R. Nogueiras, R. Gallego, J. Renaud, S. Adamo, Y. Pazos, J.P. Camiña, Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling. Mol. Ther. 23, 1003–1021 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    G. Ruozi, F. Bortolotti, A. Falcione, M.D. Ferro, L. Ukovich, A. Macedo, L. Zentilin, N. Filigheddu, G.G. Cappellari, G. Baldini, M. Zweyer, R. Barazzoni, A. Graziani, S. Zacchigna, M. Giacca, AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat. Commun. 6(6), 7388 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    G.G. Togliatto, A. Trombetta, P. Dentelli, P. Cotogni, A. Rosso, H. Matthias, R. Granata, E. Ghigo, M.F. Brizzi, G. Togliatto, A. Trombetta, P. Dentelli, P. Cotogni, A. Rosso, Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J. Am. Heart Assoc. 2, e000376 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    N.Filigheddu, V.F.Gnocchi, M.Coscia, M.Cappelli, P.E.Porporato, R.Taulli, S. Traini, G.Baldanzi, F.Chianale, S.Cutrupi, E.Arnoletti, C.Ghe, A.Fubini, N.Surico, F.Sinigaglia, C.Ponzetto, G.Muccioli, T.Crepaldi, A.Graziani, Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol. Biol. Cell 18, 986–994 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    I. Santos-Zas, U. Gurriarán-Rodríguez, T. Cid-Díaz, G. Figueroa, J. González-Sánchez, M. Bouzo-Lorenzo, C.S. Mosteiro, J. Señarís, F.F. Casanueva, X. Casabiell, R. Gallego, Y. Pazos, V. Mouly, J.P. Camiña, β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell. Mol. Life. Sci. 73, 617–635 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    A.P. Yu, X.M. Pei, T.K. Sin, S.P. Yip, B.Y. Yung, L.W. Chan, C.S. Wong, P.M. Siu, Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol. 211, 201–213 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Balasubramaniam, R. Joshi, C. Su, L.A. Friend, S. Sheriff, R.J. Kagan, J.H. James, Ghrelin inhibits skeletal muscle protein breakdown in rats with thermal injury through normalizing elevated expression of E3 ubiquitin ligases MuRF1 and MAFbx. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R893 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    S. Sheriff, N. Kadeer, R. Joshi, L. Ann, J.H. James, A. Balasubramaniam, Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. Mol. Cell. Endocrinol. 351, 286–295 (2012)CrossRefPubMedGoogle Scholar
  12. 12.
    P.E. Porporato, N. Filigheddu, S. Reano, M. Ferrara, E. Angelino, V.F. Gnocchi, F. Prodam, G. Ronchi, S. Fagoonee, M. Fornaro, F. Chianale, G. Baldanzi, N. Surico, F. Sinigaglia, I. Perroteau, R.G. Smith, Y. Sun, S. Geuna, A. Graziani, Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J. Clin. Invest. 123, 611–622 (2013)PubMedPubMedCentralGoogle Scholar
  13. 13.
    M. Tamaki, A. Hagiwara, K. Miyashita, S. Wakino, H. Inoue, K. Fujii, C. Fujii, M. Sato, M. Mitsuishi, A. Muraki, K. Hayashi, T. Doi, H. Itoh, Improvement of physical decline through combined effects of muscle enhancement and mitochondrial activation by a gastric hormone ghrelin in male 5/6Nx CKD model mice. Endocrinology 156, 3638–3648 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    G.G. Cappellari, A. Semolic, G. Ruozi, P. Vinci, G. Guarnieri, F. Bortolotti, D. Barbetta, M. Zanetti, M. Giacca, R. Barazzoni, Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J. 31, 5159–5171 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Zeng, S. Chen, Y. Yang, Z. Ke, Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 8, 72872–72885 (2017)PubMedPubMedCentralGoogle Scholar
  16. 16.
    K. Koshinaka, K. Toshinai, A. Mohammad, K. Noma, M. Oshikawa, H. Ueno, H. Yamaguchi, M. Nakazato, Therapeutic potential of ghrelin treatment for unloading-induced muscle atrophy in mice. Biochem. Biophys. Res. Commun. 412, 296–301 (2011)CrossRefPubMedGoogle Scholar
  17. 17.
    M. Sugiyama, A. Yamaki, M. Furuya, N. Inomata, Y. Minamitake, K. Ohsuye, K. Kangawa, Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. Regul. Pept. 178, 21–28 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    H. Tsubouchi, S. Yanagi, A. Miura, N. Matsumoto, K. Kangawa, M. Nakazato, Ghrelin relieves cancer cachexia associated with the development of lung adenocarcinoma in mice. Eur. J. Pharmacol. 743, 1–10 (2014)CrossRefPubMedGoogle Scholar
  19. 19.
    J.Chen, A.Splenser, B.Guillory, J.Luo, M.Mendiratta, B.Belinova, T.Halder, G.Zhang, Y.Li, J.M.Garcia, Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle 6, 132–143 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    G.G. Cappellari, M. Zanetti, A. Semolic, P. Vinci, G. Ruozi, A. Falcione, N. Filigheddu, G. Guarnieri, A. Graziani, M. Giacca, R. Barazzoni, Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents. Diabetes 65, 874–886 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Hassouna, P. Zizzari, C. Tomasetto, J.D. Veldhuis, O. Fiquet, A. Labarthe, J. Cognet, F. Steyn, C. Chen, J. Epelbaum, V. Tolle, An early reduction in GH peak amplitude in preproghrelin-deficient male mice has a minor impact on linear growth. Endocrinology 155, 3561–3571 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    K.L. Shea, W. Xiang, V.S. Laporta, J.D. Licht, C. Keller, M.A. Basson, A.S. Brack, Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6, 117–129 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    F. Prodam, N. Filigheddu, Ghrelin gene products in acute and chronic inflammation. Arch. Immunol. Ther. Exp. (Warsz). 62, 369–384 (2014)CrossRefPubMedGoogle Scholar
  24. 24.
    H. Yin, F. Price, M.A. Rudnicki, Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elia Angelino
    • 1
    • 2
  • Simone Reano
    • 1
  • Alessandro Bollo
    • 1
    • 2
  • Michele Ferrara
    • 1
    • 2
  • Marilisa De Feudis
    • 1
  • Hana Sustova
    • 1
  • Emanuela Agosti
    • 1
  • Sara Clerici
    • 1
    • 2
  • Flavia Prodam
    • 3
  • Catherine-Laure Tomasetto
    • 4
  • Andrea Graziani
    • 1
    • 2
    Email author
  • Nicoletta Filigheddu
    • 1
    Email author
  1. 1.Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
  2. 2.Università Vita-Salute San RaffaeleMilanoItaly
  3. 3.Department of Health SciencesUniversity of Piemonte OrientaleNovaraItaly
  4. 4.IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire - Université de StrasbourgIllkirchFrance

Personalised recommendations