Advertisement

Endocrine

, Volume 61, Issue 3, pp 357–371 | Cite as

Microbiota and metabolic diseases

  • Alessia Pascale
  • Nicoletta Marchesi
  • Cristina Marelli
  • Adriana Coppola
  • Livio Luzi
  • Stefano Govoni
  • Andrea Giustina
  • Carmine Gazzaruso
Review

Abstract

The microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi, living in different districts of the human body, such as the gastro-enteric tube, skin, mouth, respiratory system, and the vagina. Over 70% of the microbiota lives in the gastrointestinal tract in a mutually beneficial relationship with its host. The microbiota plays a major role in many metabolic functions, including modulation of glucose and lipid homeostasis, regulation of satiety, production of energy and vitamins. It exerts a role in the regulation of several biochemical and physiological mechanisms through the production of metabolites and substances. In addition, the microbiota has important anti-carcinogenetic and anti-inflammatory actions. There is growing evidence that any modification in the microbiota composition can lead to several diseases, including metabolic diseases, such as obesity and diabetes, and cardiovascular diseases. This is because alterations in the microbiota composition can cause insulin resistance, inflammation, vascular, and metabolic disorders. The causes of the microbiota alterations and the mechanisms by which microbiota modifications can act on the development of metabolic and cardiovascular diseases have been reported. Current and future preventive and therapeutic strategies to prevent these diseases by an adequate modulation of the microbiota have been also discussed.

Key words

Microbiota Microbiome Diabetes Obesity Cardiovascular disease Metabolic syndrome 

Abbreviations

AMPK

AMP-Activated protein kinase

CVD

Cardiovascular diseases

FIAF

Fasting-induced adipose factor

FMI

Fecal microbiota transplant

GLP-1

Glucagon-like peptide 1

GLP-2

Glucagon-like peptide-2

HDL

High-density lipoprotein

HFD

High-fat diet

IR

Insulin resistance

LPL

Lipoprotein lipase

LPS

Lipopolysaccharide

MS

Metabolic syndrome

PYY

Peptide YY

RYGB

Roux-en-Y bypass

SCFAs

Short-chain fatty acids

T1D

Type 1 diabetes

T2D

Type 2 diabetes

TLR4

Toll-like receptor 4

TMAO

Trimethylamine-N-oxide

VLDL

Very low-density lipoprotein

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present editorial complies with ethical requirements.

References

  1. 1.
    R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).  https://doi.org/10.1371/journal.pbio.1002533 PubMedPubMedCentralGoogle Scholar
  2. 2.
    C. Palmer, E.M. Bik, D.B. DiGiulio, D.A. Relman, P.O. Brown, Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).  https://doi.org/10.1371/journal.pbio.0050177 Google Scholar
  3. 3.
    A. Pingitore, E.S. Chambers, T. Hill, I.R. Maldonado, B. Liu, G. Bewick, D.J. Morrison, T. Preston, G.A. Wallis, C. Tedford, R. Castañera González, G.C. Huang, P. Choudhary, G. Frost, S.J. Persaud, The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017).  https://doi.org/10.1111/dom.12811 PubMedGoogle Scholar
  4. 4.
    F. Bäckhed, J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, M.T. Khan, J. Zhang, J. Li, L. Xiao, J. Al-Aama, D. Zhang, Y.S. Lee, D. Kotowska, C. Colding, V. Tremaroli, Y. Yin, S. Bergman, X. Xu, L. Madsen, K. Kristiansen, J. Dahlgren, J. Wang, W. Jun, Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).  https://doi.org/10.1016/j.chom.2015.04.004 PubMedGoogle Scholar
  5. 5.
    B.S. Ramakrishna, The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S6 (2007)Google Scholar
  6. 6.
    F. Bäckhed, C.M. Fraser, Y. Ringel, M.E. Sanders, R.B. Sartor, P.M. Sherman, J. Versalovic, V. Young, B.B. Finlay, Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12, 611–622 (2012).  https://doi.org/10.1016/j.chom.2012.10.012 PubMedGoogle Scholar
  7. 7.
    Human Microbiome Project C., A framework for human microbiome research. Nature 486, 215–221 (2012).  https://doi.org/10.1038/nature11209 Google Scholar
  8. 8.
    E.A. Grice, J.A. Segre, The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 13, 151–170 (2012).  https://doi.org/10.1146/annurev-genom-090711-163814 Google Scholar
  9. 9.
    D.A. Hill, D. Artis, Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).  https://doi.org/10.1146/annurev-immunol-030409-101330 PubMedPubMedCentralGoogle Scholar
  10. 10.
    C. Mueller, A.J. Macpherson, Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55, 276–284 (2006)PubMedPubMedCentralGoogle Scholar
  11. 11.
    F. Guarner, J.-R. Malagelada, Gut flora in health and disease. Lancet 361, 512–519 (2003).  https://doi.org/10.1016/S0140-6736(03)12489-0 PubMedGoogle Scholar
  12. 12.
    I. Rowland, G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, K. Tuohy, Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57(1), 1–24 (2017).  https://doi.org/10.1007/s00394-017-1445-8 PubMedPubMedCentralGoogle Scholar
  13. 13.
    L. Capurso, Il Microbiota intestinale. Recent. Prog. Med. 107, 257–266 (2016)Google Scholar
  14. 14.
    E.F. Enright, C.G.M. Gahan, S.A. Joyce, B.T. Griffin, The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375–382 (2016)PubMedPubMedCentralGoogle Scholar
  15. 15.
    D.R. Donohoe, N. Garge, X. Zhang, W. Sun, T.M. O’Connell, M.K. Bunger, S.J. Bultman, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).  https://doi.org/10.1016/j.cmet.2011.02.018 PubMedPubMedCentralGoogle Scholar
  16. 16.
    N. Kobyliak, O. Virchenko, T. Falalyeyeva, Pathophysiological role of host microbiota in the development of obesity. Nutr. J. 15, 1–12 (2016).  https://doi.org/10.1186/s12937-016-0166-9 Google Scholar
  17. 17.
    Y.E. Borre, G.W. O’Keeffe, G. Clarke, C. Stanton, T.G. Dinan, J.F. Cryan, Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20, 509–518 (2014).  https://doi.org/10.1016/j.molmed.2014.05.002 PubMedGoogle Scholar
  18. 18.
    D.J. Morrison, T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).  https://doi.org/10.1080/19490976.2015.1134082 PubMedPubMedCentralGoogle Scholar
  19. 19.
    G. den Besten, K. van Eunen, A.K. Groen, K. Venema, D.-J. Reijngoud, B.M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).  https://doi.org/10.1194/jlr.R036012 Google Scholar
  20. 20.
    G.T. Macfarlane, G.R. Gibson, J.H. Cummings, Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).  https://doi.org/10.1111/j.1365-2672.1992.tb04882.x PubMedGoogle Scholar
  21. 21.
    J.G. LeBlanc, F. Chain, R. Martín, L.G. Bermúdez-Humarán, S. Courau, P. Langella, Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16, 1–10 (2017).  https://doi.org/10.1186/s12934-017-0691-z Google Scholar
  22. 22.
    C.K. Chakraborti, New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 6, 110–119 (2015).  https://doi.org/10.4291/wjgp.v6.i4.110 PubMedPubMedCentralGoogle Scholar
  23. 23.
    X. Li, Y. Shimizu, I. Kimura, Gut microbial metabolite short-chain fatty acids and obesity. Biosci. Micro., Food Heal. 36, 135–140 (2017).  https://doi.org/10.12938/bmfh.17-010 Google Scholar
  24. 24.
    P. Schönfeld, L. Wojtczak, Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954 (2016).  https://doi.org/10.1194/jlr.R067629 PubMedPubMedCentralGoogle Scholar
  25. 25.
    D.N. Cooper, R.J. Martin, N.L. Keim, Does whole grain consumption alter gut microbiota and satiety? Healthc. (Basel, Switz.) 3, 364–392 (2015).  https://doi.org/10.3390/healthcare3020364 Google Scholar
  26. 26.
    A. Everard, P.D. Cani, Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15, 189–196 (2014)PubMedGoogle Scholar
  27. 27.
    G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).  https://doi.org/10.1038/ncomms4611 PubMedPubMedCentralGoogle Scholar
  28. 28.
    L.E.M. Willemsen, M.A. Koetsier, S.J.H. van Deventer, E.A.F. van Tol, Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003)PubMedPubMedCentralGoogle Scholar
  29. 29.
    F.J. Cousin, S. Jouan-Lanhouet, N. Theret, C. Brenner, E. Jouan, G. Le Moigne-Muller, M.-T. Dimanche-Boitrel, G. Jan, The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget 7, 7161–7178 (2016).  https://doi.org/10.18632/oncotarget.6881 PubMedPubMedCentralGoogle Scholar
  30. 30.
    J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017)PubMedPubMedCentralGoogle Scholar
  31. 31.
    H.J. Flint, E.A. Bayer, Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. New Y. Acad. Sci. 1125, 280–288 (2008)Google Scholar
  32. 32.
    P. van den Abbeele, P. Gérard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, M. Kleerebezem, E.G. Zoetendal, H. Smidt, W. Verstraete, T. van de Wiele, S. Possemiers, Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ. Microbiol. 13, 2667–2680 (2011).  https://doi.org/10.1111/j.1462-2920.2011.02533.x PubMedGoogle Scholar
  33. 33.
    A.L. McOrist, R.B. Miller, A.R. Bird, J.B. Keogh, M. Noakes, D.L. Topping, M.A. Conlon, Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J. Nutr. 141, 883–889 (2011).  https://doi.org/10.3945/jn.110.128504 PubMedGoogle Scholar
  34. 34.
    C. Grootaert, P. Van Den Abbeele, M. Marzorati, W.F. Broekaert, C.M. Courtin, J.A. Delcour, W. Verstraete, T. Van De Wiele, Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 69, 231–242 (2009).  https://doi.org/10.1111/j.1574-6941.2009.00712.x PubMedGoogle Scholar
  35. 35.
    M. Begley, C. Hill, C.G.M. Gahan, Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738 (2006).  https://doi.org/10.1128/AEM.72.3.1729-1738.2006 PubMedPubMedCentralGoogle Scholar
  36. 36.
    WHO | Obesity and overweight. (WHO, Geneva, Switzerland, 2018)Google Scholar
  37. 37.
    K. Ball, G. Mishra, D. Crawford, Which aspects of socioeconomic status are related to obesity among men and women? Int. J. Obes. Relat. Metab. Disord. 26, 559–565 (2002).  https://doi.org/10.1038/sj.ijo.0801960 PubMedGoogle Scholar
  38. 38.
    J.F. Rawls, M.A. Mahowald, R.E. Ley, J.I. Gordon, Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2018).  https://doi.org/10.1016/j.cell.2006.08.043 Google Scholar
  39. 39.
    R. Ley, P. Turnbaugh, S. Klein, J. Gordon, Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).  https://doi.org/10.1038/nature4441021a PubMedGoogle Scholar
  40. 40.
    M.A. Hildebrandt, C. Hoffman, S.A. Sherrill-Mix, S.A. Keilbaugh, M. Hamady, Y.-Y. Chen, R. Knight, R.S. Ahima, F. Bushman, G.D. Wu, High fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1712–1716 (2009).  https://doi.org/10.1053/j.gastro.2009.08.042 Google Scholar
  41. 41.
    P.J. Turnbaugh, F. Bäckhed, L. Fulton, J.I. Gordon, Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).  https://doi.org/10.1016/j.chom.2008.02.015 PubMedPubMedCentralGoogle Scholar
  42. 42.
    M.A. Conlon, A.R. Bird, The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44 (2015).  https://doi.org/10.3390/nu7010017 Google Scholar
  43. 43.
    J. Hamzelou, Antibiotic overuse may promote obesity. New Sci. 213, 8–9 (2012).  https://doi.org/10.1016/S0262-4079(12)60797-0 Google Scholar
  44. 44.
    L. Trasande, J. Blustein, M. Liu, E. Corwin, L.M. Cox, M.J. Blaser, Infant antibiotic exposures and early-life body mass. Int. J. Obes. (Lond.). 37, 16–23 (2013).  https://doi.org/10.1038/ijo.2012.132 Google Scholar
  45. 45.
    L. Dethlefsen, D.A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. U.S.A. 108, Suppl, 4554–4561 (2011).  https://doi.org/10.1073/pnas.1000087107 PubMedGoogle Scholar
  46. 46.
    P. Vangay, T. Ward, J.S. Gerber, D. Knights, Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17, 553–564 (2015).  https://doi.org/10.1016/J.CHOM.2015.04.006 PubMedPubMedCentralGoogle Scholar
  47. 47.
    F. Bäckhed, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, C.F. Semenkovich, J.I. Gordon, The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. U.S.A. 101, 15718–15723 (2004).  https://doi.org/10.1073/pnas.0407076101 PubMedPubMedCentralGoogle Scholar
  48. 48.
    P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon, An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).  https://doi.org/10.1038/nature05414 PubMedGoogle Scholar
  49. 49.
    A.P. Liou, M. Paziuk, J.M. Luevano, S. Machineni, P.J. Turnbaugh, L.M. Kaplan, Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5, 178ra41 (2013).  https://doi.org/10.1126/scitranslmed.3005687 PubMedPubMedCentralGoogle Scholar
  50. 50.
    S. Kersten, S. Mandard, N.S. Tan, P. Escher, D. Metzger, P. Chambon, F.J. Gonzalez, B. Desvergne, W. Wahli, Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem. 275, 28488–28493 (2000).  https://doi.org/10.1074/jbc.M004029200 PubMedGoogle Scholar
  51. 51.
    E.M. Cushing, X. Chi, K.L. Sylvers, S.K. Shetty, M.J. Potthoff, B.S.J. Davies, Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting. Mol. Metab. 6, 809–818 (2017).  https://doi.org/10.1016/j.molmet.2017.06.007 PubMedPubMedCentralGoogle Scholar
  52. 52.
    F. Bäckhed, J.K. Manchester, C.F. Semenkovich, J.I. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. U.S.A. 104, 979–984 (2007).  https://doi.org/10.1073/pnas.0605374104 PubMedPubMedCentralGoogle Scholar
  53. 53.
    N.E. Boutagy, R.P. McMillan, M.I. Frisard, M.W. Hulver, Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 124, 11–20 (2016).  https://doi.org/10.1016/j.biochi.2015.06.020 PubMedGoogle Scholar
  54. 54.
    H. Ghanim, S. Abuaysheh, C.L. Sia, K. Korzeniewski, A. Chaudhuri, J.M. Fernandez-Real, P. Dandona, Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009).  https://doi.org/10.2337/dc09-0979 PubMedPubMedCentralGoogle Scholar
  55. 55.
    P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).  https://doi.org/10.2337/db06-1491 PubMedGoogle Scholar
  56. 56.
    M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell. Biol. 13, 1016–1023 (2011).  https://doi.org/10.1038/ncb2329 PubMedPubMedCentralGoogle Scholar
  57. 57.
    E. Le Poul, C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, M. Detheux, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).  https://doi.org/10.1074/jbc.M301403200 PubMedGoogle Scholar
  58. 58.
    A.J. Brown, S.M. Goldsworthy, A.A. Barnes, M.M. Eilert, L. Tcheang, D. Daniels, A.I. Muir, M.J. Wigglesworth, I. Kinghorn, N.J. Fraser, N.B. Pike, J.C. Strum, K.M. Steplewski, P.R. Murdock, J.C. Holder, F.H. Marshall, P.G. Szekeres, S. Wilson, D.M. Ignar, S.M. Foord, A. Wise, S.J. Dowell, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).  https://doi.org/10.1074/jbc.M211609200 PubMedGoogle Scholar
  59. 59.
    B.S. Samuel, A. Shaito, T. Motoike, F.E. Rey, F. Backhed, J.K. Manchester, R.E. Hammer, S.C. Williams, J. Crowley, M. Yanagisawa, J.I. Gordon, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. 105, 16767–16772 (2008)PubMedGoogle Scholar
  60. 60.
    M. Bjursell, T. Admyre, M. Göransson, A.E. Marley, D.M. Smith, J. Oscarsson, M. Bohlooly-Y, Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Metab. 300, E211–E220 (2010).  https://doi.org/10.1152/ajpendo.00229.2010 Google Scholar
  61. 61.
    V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).  https://doi.org/10.1126/science.1241214 PubMedGoogle Scholar
  62. 62.
    N.-R. Shin, J.-C. Lee, H.-Y. Lee, M.-S. Kim, T.W. Whon, M.-S. Lee, J.-W. Bae, An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).  https://doi.org/10.1136/gutjnl-2012-303839 PubMedGoogle Scholar
  63. 63.
    American Diabetes Association A.D., Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1), S62–S69 (2010).  https://doi.org/10.2337/dc10-S062 Google Scholar
  64. 64.
    WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. (WHO, Geneva, Switzerland, 2013)Google Scholar
  65. 65.
    F. Navab-Moghadam, M. Sedighi, M.E. Khamseh, F. Alaei-Shahmiri, M. Talebi, S. Razavi, N. Amirmozafari, The association of type II diabetes with gut microbiota composition. Microb. Pathog. 110, 630–636 (2017).  https://doi.org/10.1016/j.micpath.2017.07.034 PubMedGoogle Scholar
  66. 66.
    H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L.M. Olsson, M. Serino, M. Planas-Fèlix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernàndez-Real, F. Bäckhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).  https://doi.org/10.1038/nm.4345 PubMedGoogle Scholar
  67. 67.
    M.C. De Goffau, S. Fuentes, B. Van Den Bogert, H. Honkanen, W.M. De Vos, G.W. Welling, H. Hyöty, H.J.M. Harmsen, Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57, 1569–1577 (2014).  https://doi.org/10.1007/s00125-014-3274-0 PubMedGoogle Scholar
  68. 68.
    S. Hasan, V. Aho, P. Pereira, L. Paulin, S.B. Koivusalo, P. Auvinen, J.G. Eriksson, Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years postpartum. Acta Obstet. Gynecol. Scand. 97, 38–46 (2018).  https://doi.org/10.1111/aogs.13252 PubMedGoogle Scholar
  69. 69.
    N. Larsen, F.K. Vogensen, F.W.J. Van Den Berg, D.S. Nielsen, A.S. Andreasen, B.K. Pedersen, W.A. Al-Soud, S.J. Sørensen, L.H. Hansen, M. Jakobsen, Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).  https://doi.org/10.1371/journal.pone.0009085 PubMedPubMedCentralGoogle Scholar
  70. 70.
    D. Ríos-Covián, P. Ruas-Madiedo, A. Margolles, M. Gueimonde, C.G. de Los Reyes-Gavilán, N. Salazar, Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).  https://doi.org/10.3389/fmicb.2016.00185 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Z. Gao, J. Yin, J. Zhang, R.E. Ward, R.J. Martin, M. Lefevre, W.T. Cefalu, J. Ye, Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).  https://doi.org/10.2337/db08-1637 PubMedPubMedCentralGoogle Scholar
  72. 72.
    H.V. Lin, A. Frassetto, E.J. Kowalik, A.R. Nawrocki, M.M. Lu, J.R. Kosinski, J.A. Hubert, D. Szeto, X. Yao, G. Forrest, D.J. Marsh, Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).  https://doi.org/10.1371/journal.pone.0035240 PubMedPubMedCentralGoogle Scholar
  73. 73.
    R.J. Perry, L. Peng, N.A. Barry, G.W. Cline, D. Zhang, R.L. Cardone, K.F. Petersen, R.G. Kibbey, A.L. Goodman, G.I. Shulman, Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).  https://doi.org/10.1038/nature18309 PubMedPubMedCentralGoogle Scholar
  74. 74.
    S. Devaraj, P. Hemarajata, J. Versalovic, The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clin. Chem. 59, 617–628 (2013)PubMedPubMedCentralGoogle Scholar
  75. 75.
    M.A.R. Vinolo, H.G. Rodrigues, R.T. Nachbar, R. Curi, Regulation of inflammation by short chain fatty acids. Nutrients 3, 858–876 (2011)PubMedPubMedCentralGoogle Scholar
  76. 76.
    A. Vrieze, E. Van Nood, F. Holleman, J. Salojärvi, R.S. Kootte, J.F.W.M. Bartelsman, G.M. Dallinga-Thie, M.T. Ackermans, M.J. Serlie, R. Oozeer, M. Derrien, A. Druesne, J.E.T. Van Hylckama Vlieg, V.W. Bloks, A.K. Groen, H.G.H.J. Heilig, E.G. Zoetendal, E.S. Stroes, W.M. De Vos, J.B.L. Hoekstra, M. Nieuwdorp, Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6.e7 (2012).  https://doi.org/10.1053/j.gastro.2012.06.031 PubMedGoogle Scholar
  77. 77.
    P.D. Cani, N.M. Delzenne, The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 15, 1546–1558 (2009).  https://doi.org/10.2174/138161209788168164 PubMedGoogle Scholar
  78. 78.
    P.D. Cani, S. Possemiers, T. Van De Wiele, Y. Guiot, A. Everard, O. Rottier, L. Geurts, D. Naslain, A. Neyrinck, D.M. Lambert, G.G. Muccioli, N.M. Delzenne, Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).  https://doi.org/10.1136/gut.2008.165886 PubMedPubMedCentralGoogle Scholar
  79. 79.
    S. Hædersdal, A. Lund, F.K. Knop, T. Vilsbøll, The role of glucagon in the pathophysiology and treatment of type 2 diabetes. Mayo Clin. Proc. 93, 217–239 (2018).  https://doi.org/10.1016/j.mayocp.2017.12.003 PubMedGoogle Scholar
  80. 80.
    C.S. Marathe, C.K. Rayner, K.L. Jones, M. Horowitz, Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care. 36, 1396–1405 (2013).  https://doi.org/10.2337/dc12-1609 PubMedPubMedCentralGoogle Scholar
  81. 81.
    G.S. Papaetis, Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J. Diabetes 5, 817–834 (2014).  https://doi.org/10.4239/wjd.v5.i6.817 PubMedPubMedCentralGoogle Scholar
  82. 82.
    J. Bland, Intestinal microbiome, akkermansia muciniphila, and medical nutrition therapy. Integr. Med. (Encinitas). 15, 14–16 (2016).  https://doi.org/10.1136/gutjnl-2015-310904 Google Scholar
  83. 83.
    K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A. Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore, H. Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S. Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).  https://doi.org/10.1038/nature15766 PubMedPubMedCentralGoogle Scholar
  84. 84.
    N.M. Maruthur, E. Tseng, S. Hutfless, L.M. Wilson, C. Suarez-Cuervo, Z. Berger, Y. Chu, E. Iyoha, J.B. Segal, S. Bolen, Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016)PubMedGoogle Scholar
  85. 85.
    D. Kopelman, I. Caterson, J. Michael, W. HD, Clinical obesity in adults and children. (2009)Google Scholar
  86. 86.
    K.M. Levri, E. Slaymaker, A. Last, J. Yeh, J. Ference, F. D’Amico, S.A. Wilson, Metformin as treatment for overweight and obese adults: A systematic review. Ann. Fam. Med. 3, 457–461 (2005)PubMedPubMedCentralGoogle Scholar
  87. 87.
    M.P. van der Aa, M.A.J. Elst, E.M.W. van de Garde, E.G.A.H. van Mil, C.A.J. Knibbe, M.M.J. van der Vorst, Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial. Nutr. Diabetes 6, e228 (2016).  https://doi.org/10.1038/nutd.2016.37 PubMedPubMedCentralGoogle Scholar
  88. 88.
    U. Uusitalo, X. Liu, J. Yang, C.A. Aronsson, S. Hummel, M. Butterworth, Å. Lernmark, M. Rewers, W. Hagopian, J.-X. She, O. Simell, J. Toppari, A.G. Ziegler, B. Akolkar, J. Krischer, J.M. Norris, S.M. Virtanen; TEDDY Study Group, Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 33612, 1–9 (2015).  https://doi.org/10.1001/jamapediatrics.2015.2757 Google Scholar
  89. 89.
    W.-H. Lee, P.-C. Hsu, C.-Y. Chu, H.-M. Su, C.-S. Lee, H.-W. Yen, T.-H. Lin, W.-C. Voon, W.-T. Lai, S.-H. Sheu, Cardiovascular events in patients with atherothrombotic disease: a population-based longitudinal study in Taiwan. PLoS. One. 9, e92577 (2014).  https://doi.org/10.1371/journal.pone.0092577 PubMedPubMedCentralGoogle Scholar
  90. 90.
    C. Gazzaruso, S.B. Solerte, E. De Amici, M. Mancini, A. Pujia, P. Fratino, A. Giustina, A. Garzaniti, Association of the metabolic syndrome and insulin resistance with silent myocardial ischemia in patients with type 2 diabetes mellitus. Am. J. Cardiol. 97, 236–239 (2006).  https://doi.org/10.1016/j.amjcard.2005.07.133 PubMedGoogle Scholar
  91. 91.
    C. Gazzaruso, A. Coppola, A. Giustina, Erectile dysfunction and coronary artery disease in patients with diabetes. Curr. Diabetes Rev. 7, 143–147 (2011).  https://doi.org/10.2174/157339911794940693 PubMedGoogle Scholar
  92. 92.
    G.S. Crowther, M.H. Wilcox, Antibiotic therapy and Clostridium difficile infection -primum non nocere - first do no harm. Infect. Drug Resist. 8, 333–337 (2015).  https://doi.org/10.2147/IDR.S87224 PubMedPubMedCentralGoogle Scholar
  93. 93.
    W.H.W. Tang, Z. Wang, D.J. Kennedy, Y. Wu, J.A. Buffa, B. Agatisa-Boyle, X.S. Li, B.S. Levison, S.L. Hazen, Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).  https://doi.org/10.1161/CIRCRESAHA.116.305360 PubMedGoogle Scholar
  94. 94.
    R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, J.D. Smith, J.A. Didonato, J. Chen, H. Li, G.D. Wu, J.D. Lewis, M. Warrier, J.M. Brown, R.M. Krauss, W.H.W. Tang, F.D. Bushman, A.J. Lusis, S.L. Hazen, Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).  https://doi.org/10.1038/nm.3145 PubMedPubMedCentralGoogle Scholar
  95. 95.
    R.A. Koeth, B.S. Levison, M.K. Culley, J.A. Buffa, Z. Wang, J.C. Gregory, E. Org, Y. Wu, L. Li, J.D. Smith, W.H.W. Tang, J.A. Didonato, A.J. Lusis, S.L. Hazen, γ-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell. Metab. 20, 799–812 (2014).  https://doi.org/10.1016/j.cmet.2014.10.006 PubMedPubMedCentralGoogle Scholar
  96. 96.
    W.H.W. Tang, Z. Wang, Y. Fan, B. Levison, J.E. Hazen, L.M. Donahue, Y. Wu, S.L. Hazen, Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014)PubMedGoogle Scholar
  97. 97.
    W.P. Fay, Homocysteine and thrombosis: Guilt by association? Blood 119, 2977–2978 (2012)PubMedGoogle Scholar
  98. 98.
    R. Ostan, M.C. Béné, L. Spazzafumo, A. Pinto, L.M. Donini, F. Pryen, Z. Charrouf, L. Valentini, H. Lochs, I. Bourdel-Marchasson, C. Blanc-Bisson, F. Buccolini, P. Brigidi, C. Franceschi, P.A. d’Alessio, Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016).  https://doi.org/10.1016/j.clnu.2015.06.010 PubMedGoogle Scholar
  99. 99.
    J.L. Griffin, X. Wang, E. Stanley, Does Our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc Genet. 8, 187–191 (2015)PubMedPubMedCentralGoogle Scholar
  100. 100.
    J. Joseph, J. Loscalzo, Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr. Atherosler Rep. 17, 505 (2015)Google Scholar
  101. 101.
    W.H.W. Tang, S.L. Hazen, The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).  https://doi.org/10.1172/JCI72331 PubMedPubMedCentralGoogle Scholar
  102. 102.
    T. Yang, M.M. Santisteban, V. Rodriguez, E. Li, N. Ahmari, J.M. Carvajal, M. Zadeh, M. Gong, Y. Qi, J. Zubcevic, B. Sahay, C.J. Pepine, M.K. Raizada, M. Mohamadzadeh, Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015).  https://doi.org/10.1161/HYPERTENSIONAHA.115.05315 PubMedPubMedCentralGoogle Scholar
  103. 103.
    X.T. Gan, G. Ettinger, C.X. Huang, J.P. Burton, J.V. Haist, V. Rajapurohitam, J.E. Sidaway, G. Martin, G.B. Gloor, J.R. Swann, G. Reid, M. Karmazyn, Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ. Hear. Fail. 7, 491–499 (2014).  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978 Google Scholar
  104. 104.
    C.S. Hampe, C.L. Roth, Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine 58, 207–227 (2017).  https://doi.org/10.1007/s12020-017-1433-z PubMedGoogle Scholar
  105. 105.
    M.H. Floch, Probiotics and prebiotics. Gastroenterol. Hepatol. (N. Y) 10, 680–681 (2014)Google Scholar
  106. 106.
    M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)PubMedGoogle Scholar
  107. 107.
    C. Chevalier, O. Stojanović, D.J. Colin, N. Suarez-Zamorano, V. Tarallo, C. Veyrat-Durebex, D. Rigo, S. Fabbiano, A. Stevanović, S. Hagemann, X. Montet, Y. Seimbille, N. Zamboni, S. Hapfelmeier, M. Trajkovski, Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).  https://doi.org/10.1016/j.cell.2015.11.004 PubMedGoogle Scholar
  108. 108.
    L.J. Cohen, D. Esterhazy, S.-H. Kim, C. Lemetre, R.R. Aguilar, E.A. Gordon, A.J. Pickard, J.R. Cross, A.B. Emiliano, S.M. Han, J. Chu, X. Vila-Farres, J. Kaplitt, A. Rogoz, P.Y. Calle, C. Hunter, J.K. Bitok, S.F. Brady, Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).  https://doi.org/10.1038/nature23874 PubMedPubMedCentralGoogle Scholar
  109. 109.
    M. Mimee, R.J. Citorik, T.K. Lu, Microbiome therapeutics—Advances and challenges. Adv. Drug. Deliv. Rev. 105, 44–54 (2016)PubMedPubMedCentralGoogle Scholar
  110. 110.
    Z.Z.R. Hamady, N. Scott, M.D. Farrar, M. Wadhwa, P. Dilger, T.R. Whitehead, R. Thorpe, K.T. Holland, J.P.A. Lodge, S.R. Carding, Treatment of colitis with a commensal gut bacterium engineered to secrete human tgf-β1 under the control of dietary xylan 1. Inflamm. Bowel. Dis. 17, 1925–1935 (2011).  https://doi.org/10.1002/ibd.21565 PubMedGoogle Scholar
  111. 111.
    K. Vandenbroucke, H. De Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier, P. Rottiers, Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010).  https://doi.org/10.1038/mi.2009.116 PubMedGoogle Scholar
  112. 112.
    Z.Z.R. Hamady, N. Scott, M.D. Farrar, J.P.A. Lodge, K.T. Holland, T. Whitehead, S.R. Carding, Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010)PubMedGoogle Scholar
  113. 113.
    J.P. Motta, L.G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J.P. Vinel, L. Alric, E. Mas, J.M. Sallenave, P. Langella, N. Vergnolle, Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012).  https://doi.org/10.1126/scitranslmed.3004212 PubMedGoogle Scholar
  114. 114.
    G.R. Gibson, H.M. Probert, J.Van Loo, R.A. Rastall, M.B. Roberfroid, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259 (2004).  https://doi.org/10.1079/NRR200479 PubMedGoogle Scholar
  115. 115.
    J. Slavin, Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).  https://doi.org/10.3390/nu5041417 PubMedPubMedCentralGoogle Scholar
  116. 116.
    M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1–66 (2008)PubMedGoogle Scholar
  117. 117.
    B.C. Tungland, D. Meyer, Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 1, 90–109 (2002).  https://doi.org/10.1111/j.1541-4337.2002.tb00009.x Google Scholar
  118. 118.
    Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H.W. Tang, J.A. Didonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–65 (2011).  https://doi.org/10.1038/nature09922 PubMedPubMedCentralGoogle Scholar
  119. 119.
    A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)PubMedGoogle Scholar
  120. 120.
    V. Tosti, B. Bertozzi, L. Fontana, Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 73, 318–326 (2018)PubMedGoogle Scholar
  121. 121.
    T.T.B. Nguyen, Y.Y. Jin, H.J. Chung, S.T. Hong, Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22(10), E1795 (2017)PubMedGoogle Scholar
  122. 122.
    R.E. Ley, D.A. Peterson, J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).  https://doi.org/10.1016/J.CELL.2006.02.017 PubMedGoogle Scholar
  123. 123.
    R.E. Ley, F. Bäckhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, J.I. Gordon, Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. U. S. A. 102, 11070–11075 (2005).  https://doi.org/10.1073/pnas.0504978102 PubMedPubMedCentralGoogle Scholar
  124. 124.
    A.L. Komaroff, The microbiome and risk for obesity and diabetes. JAMA 317, 355 (2017).  https://doi.org/10.1001/jama.2016.20099 PubMedGoogle Scholar
  125. 125.
    S.K. Mazmanian, J.L. Round, D.L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).  https://doi.org/10.1038/nature07008 PubMedGoogle Scholar
  126. 126.
    L. Wen, R.E. Ley, P.Y. Volchkov, P.B. Stranges, L. Avanesyan, A.C. Stonebraker, C. Hu, F.S. Wong, G.L. Szot, J.A. Bluestone, J.I. Gordon, A.V. Chervonsky, Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).  https://doi.org/10.1038/nature07336 PubMedPubMedCentralGoogle Scholar
  127. 127.
    Y.S. Kim, J.A. Milner, Dietary modulation of colon cancer risk. J. Nutr. 137, 2576S–2579S (2007)PubMedGoogle Scholar
  128. 128.
    S.K.P. Lau, P.C.Y. Woo, G.K.S. Woo, A.M.Y. Fung, M.K.M. Wong, K.-M. Chan, D.M.W. Tam, K.-Y. Yuen, Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn. Microbiol. Infect. Dis. 49, 255–263 (2004).  https://doi.org/10.1016/j.diagmicrobio.2004.04.012 PubMedGoogle Scholar
  129. 129.
    M. Kraatz, R.J. Wallace, L. Svensson, Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int. J. Syst. Evol. Microbiol. 61, 795–803 (2011).  https://doi.org/10.1099/ijs.0.022954-0 PubMedGoogle Scholar
  130. 130.
    S.K. Lau, P.C. Woo, A.M. Fung, K. Chan, G.K. Woo, K. Yuen, Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J. Med. Microbiol. 53, 1247–1253 (2004).  https://doi.org/10.1099/jmm.0.45803-0 PubMedGoogle Scholar
  131. 131.
    A. Finamore, M. Palmery, S. Bensehaila, I. Peluso, Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid. Med. Cell Longev. 2017, 3247528 (2017).  https://doi.org/10.1155/2017/3247528. 1–14PubMedPubMedCentralGoogle Scholar
  132. 132.
    D.J. Hampson, T. La, N.D. Phillips, Emergence of Brachyspira species and strains: reinforcing the need for surveillance. Porc. Heal. Manag. 1, 8 (2015).  https://doi.org/10.1186/s40813-015-0002-1 Google Scholar
  133. 133.
    M.Y. Galperin, New feel for new phyla. Environ. Microbiol. 10, 1927–1933 (2008).  https://doi.org/10.1111/j.1462-2920.2008.01699.x PubMedPubMedCentralGoogle Scholar
  134. 134.
    M. Yamauchi, P. Lochhead, T. Morikawa, C. Huttenhower, A.T. Chan, E. Giovannucci, C. Fuchs, S. Ogino, Colorectal cancer: a tale of two sides or a continuum? Gut 61, 794–797 (2012).  https://doi.org/10.1136/gutjnl-2012-302014 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Drug Sciences, Pharmacology sectionUniversity of PaviaPaviaItaly
  2. 2.Diabetes and endocrine and metabolic diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute “Beato Matteo” (Hospital Group San Donato)VigevanoItaly
  3. 3.Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
  4. 4.Metabolism Research CenterIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  5. 5.Chair of Endocrinology San Raffaele Vita-Salute UniversityMilanItaly

Personalised recommendations