Advertisement

Endocrine

, Volume 61, Issue 2, pp 180–193 | Cite as

Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin?

  • Silvia Giatti
  • Silvia Diviccaro
  • Giancarlo Panzica
  • Roberto Cosimo Melcangi
Review

Abstract

Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, it is well known that sexual dysfunction may occur in patients treated with antidepressants like selective serotonin reuptake inhibitors (SSRI). A similar side effect has been also reported during treatment with finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual dysfunction persists in both cases after drug discontinuation. These conditions have been named post-SSRI sexual dysfunction (PSSD) and post-finasteride syndrome (PFS). In particular, feeling of a lack of connection between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of these diseases is probably so far underestimated and their etiopathogenesis is not sufficiently explored. To this aim, the present review will report the state of art of these two different pathologies and discuss, on the basis of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, whether the persistent sexual dysfunction observed could be determined by common mechanisms.

Keywords

Neuroactive steroids Dopamine Serotonin Sexual behavior 

Notes

Acknowledgements

The authors would like to thank Andrea Radighieri for the help in collecting data of PSSD patients.

Funding

We thank the Post-Finasteride Foundation for the financial support to R.C.M.

Author contributions

All the authors contributed to the developments, analysis and drafting of this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D.A. Finn, A.S. Beadles-Bohling, E.H. Beckley, M.M. Ford, K.R. Gililland, R.E. Gorin-Meyer, K.M. Wiren, A new look at the 5alpha-reductase inhibitor finasteride. Cns. Drug. Rev. 12(1), 53–76 (2006).  https://doi.org/10.1111/j.1527-3458.2006.00053.x PubMedCrossRefGoogle Scholar
  2. 2.
    A.M. Traish, R.C. Melcangi, M. Bortolato, L.M. Garcia-Segura, M. Zitzmann, Adverse effects of 5alpha-reductase inhibitors: what do we know, don’t know, and need to know?. Rev. Endocr. Metab. Disord. 16, 177–198 (2015).  https://doi.org/10.1007/s11154-015-9319-y PubMedCrossRefGoogle Scholar
  3. 3.
    K.D. Kaufman, E.A. Olsen, D. Whiting, R. Savin, R. DeVillez, W. Bergfeld, V.H. Price, D. Van Neste, J.L. Roberts, M. Hordinsky, J. Shapiro, B. Binkowitz, G.J. Gormley, , Finasteride in the treatment of men with androgenetic alopecia. Finasteride male pattern hair loss study group. J. Am. Acad. Dermatol. 39(4 Pt 1), 578–589 (1998). https://doi.org/S0190-9622(98)70007-6PubMedCrossRefGoogle Scholar
  4. 4.
    S.V. Frye, H.N. Bramson, D.J. Hermann, F.W. Lee, A.K. Sinhababu, G. Tian, Discovery and development of GG745, a potent inhibitor of both isozymes of 5 alpha-reductase. Pharm. Biotechnol. 11, 393–422 (1998)PubMedCrossRefGoogle Scholar
  5. 5.
    J.C. Nickel, Y. Fradet, R.C. Boake, P.J. Pommerville, J.P. Perreault, S.K. Afridi, M.M. Elhilali, Efficacy and safety of finasteride therapy for benign prostatic hyperplasia: Results of a 2-year randomized controlled trial (the PROSPECT study). PROscar Safety Plus Efficacy Canadian Two year Study. CMAJ 155(9), 1251–1259 (1996)PubMedPubMedCentralGoogle Scholar
  6. 6.
    P. Siami, C.G. Roehrborn, J. Barkin, R. Damiao, M. Wyczolkowski, A. Duggan, K. Major-Walker, B.B. Morrill, A.Tsg Comb, Combination therapy with dutasteride and tamsulosin in men with moderate-to-severe benign prostatic hyperplasia and prostate enlargement: The CombAT (Combination of Avodart and Tamsulosin) trial rationale and study design. Contemp. Clin. Trials 28(6), 770–779 (2007).  https://doi.org/10.1016/j.cct.2007.07.008 PubMedCrossRefGoogle Scholar
  7. 7.
    S.A. Kaplan, D.E. Chung, R.K. Lee, S. Scofield, A.E. Te, A 5-year retrospective analysis of 5alpha-reductase inhibitors in men with benign prostatic hyperplasia: Finasteride has comparable urinary symptom efficacy and prostate volume reduction, but less sexual side effects and breast complications than dutasteride. Int. J. Clin. Pract. 66(11), 1052–1055 (2012).  https://doi.org/10.1111/j.1742-1241.2012.03010.x PubMedCrossRefGoogle Scholar
  8. 8.
    A. La Torre, G. Giupponi, D. Duffy, A. Conca, T. Cai, A. Scardigli, Sexual dysfunction related to drugs: A critical review. Part V: alpha-blocker and 5-ARI drugs. Pharmacopsychiatry 49(1), 3–13 (2016).  https://doi.org/10.1055/s-0035-1565100 PubMedCrossRefGoogle Scholar
  9. 9.
    S. Gur, P.J. Kadowitz, W.J. Hellstrom, Effects of 5-alpha reductase inhibitors on erectile function, sexual desire and ejaculation. Expert. Opin. Drug. Saf. 12(1), 81–90 (2013).  https://doi.org/10.1517/14740338.2013.742885 PubMedCrossRefGoogle Scholar
  10. 10.
    G. Corona, G. Rastrelli, E. Maseroli, G. Balercia, A. Sforza, G. Forti, E. Mannucci, M. Maggi, Inhibitors of 5alpha-reductase-related side effects in patients seeking medical care for sexual dysfunction. J. Endocrinol. Invest. 35(10), 915–920 (2012).  https://doi.org/10.3275/8510 PubMedCrossRefGoogle Scholar
  11. 11.
    A.M. Traish, J. Hassani, A.T. Guay, M. Zitzmann, M.L. Hansen, Adverse side effects of 5alpha-reductase inhibitors therapy: Persistent diminished libido and erectile dysfunction and depression in a subset of patients. J. Sex. Med. 8(3), 872–884 (2011).  https://doi.org/10.1111/j.1743-6109.2010.02157.x PubMedCrossRefGoogle Scholar
  12. 12.
    M.S. Irwig, S. Kolukula, Persistent sexual side effects of finasteride for male pattern hair loss. J. Sex. Med. 8(6), 1747–1753 (2011).  https://doi.org/10.1111/j.1743-6109.2011.02255.x PubMedCrossRefGoogle Scholar
  13. 13.
    M.S. Irwig, Persistent sexual side effects of finasteride: Could they be permanent? J. Sex. Med. 9(11), 2927–2932 (2012).  https://doi.org/10.1111/j.1743-6109.2012.02846.x PubMedCrossRefGoogle Scholar
  14. 14.
    M. Guo, B. Heran, R. Flannigan, A. Kezouh, M. Etminan, Persistent sexual dysfunction with finasteride 1 mg taken for hair loss. Pharmacotherapy 36(11), 1180–1184 (2016).  https://doi.org/10.1002/phar.1837 PubMedCrossRefGoogle Scholar
  15. 15.
    T. Kiguradze, W.H. Temps, P.R. Yarnold, J. Cashy, R.E. Brannigan, B. Nardone, G. Micali, D.P. West, S.M. Belknap, Persistent erectile dysfunction in men exposed to the 5alpha-reductase inhibitors, finasteride, or dutasteride. PeerJ 5, e3020 (2017).  https://doi.org/10.7717/peerj.3020 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    G. Chiriaco, S. Cauci, G. Mazzon, C. Trombetta, An observational retrospective evaluation of 79 young men with long-term adverse effects after use of finasteride against androgenetic alopecia. Andrology 4(2), 245–250 (2016).  https://doi.org/10.1111/andr.12147 PubMedCrossRefGoogle Scholar
  17. 17.
    C.A. Ganzer, A.R. Jacobs, F. Iqbal, Persistent sexual, emotional, and cognitive impairment post-finasteride: a survey of men reporting symptoms. Am. J. Mens Health (2014). https://doi.org/10.1177/1557988314538445
  18. 18.
    S. Basaria, R. Jasuja, G. Huang, W. Wharton, H. Pan, K. Pencina, Z. Li, T.G. Travison, J. Bhawan, R. Gonthier, F. Labrie, A.Y. Dury, C. Serra, A. Papazian, M. O’Leary, S. Amr, T.W. Storer, E. Stern, S. Bhasin, Characteristics of men who report persistent sexual symptoms after finasteride use for hair loss. J. Clin. Endocrinol. Metab., jc20162726 (2016).  https://doi.org/10.1210/jc.2016-2726
  19. 19.
    R.C. Melcangi, D. Santi, R. Spezzano, M. Grimoldi, T. Tabacchi, M.L. Fusco, S. Diviccaro, S. Giatti, G. Carra, D. Caruso, M. Simoni, G. Cavaletti, Neuroactive steroid levels and psychiatric and andrological features in post-finasteride patients. J. Steroid Biochem. Mol. Biol. 171, 229–235 (2017).  https://doi.org/10.1016/j.jsbmb.2017.04.003 PubMedCrossRefGoogle Scholar
  20. 20.
    A.K. Ali, B.S. Heran, M. Etminan, Persistent sexual dysfunction and suicidal ideation in young men treated with low-dose finasteride: A pharmacovigilance study. Pharmacotherapy 35(7), 687–695 (2015).  https://doi.org/10.1002/phar.1612 PubMedCrossRefGoogle Scholar
  21. 21.
    R. Fertig, J. Shapiro, W. Bergfeld, A. Tosti, Investigation of the plausibility of 5-alpha-reductase inhibitor syndrome. Skin. Appendage Disord. 2(3-4), 120–129 (2017).  https://doi.org/10.1159/000450617 PubMedCrossRefGoogle Scholar
  22. 22.
    G. Altomare, G.L. Capella, Depression circumstantially related to the administration of finasteride for androgenetic alopecia. J. Dermatol. 29(10), 665–669 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    B. Rahimi-Ardabili, R. Pourandarjani, P. Habibollahi, A. Mualeki, Finasteride induced depression: a prospective study. Bmc. Clin. Pharmacol. 6, 7 (2006).  https://doi.org/10.1186/1472-6904-6-7 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    M.S. Irwig, Depressive symptoms and suicidal thoughts among former users of finasteride with persistent sexual side effects. J. Clin. Psychiatry 73(9), 1220–1223 (2012).  https://doi.org/10.4088/JCP.12m07887 PubMedCrossRefGoogle Scholar
  25. 25.
    C. Hogan, J. Le Noury, D. Healy, D. Mangin, One hundred and twenty cases of enduring sexual dysfunction following treatment. Int. J. risk Saf. Med. 26(2), 109–116 (2014).  https://doi.org/10.3233/jrs-140617 PubMedCrossRefGoogle Scholar
  26. 26.
    R.C. Melcangi, D. Caruso, F. Abbiati, S. Giatti, D. Calabrese, F. Piazza, G. Cavaletti, Neuroactive steroid levels are modified in cerebrospinal fluid and plasma of post-finasteride patients showing persistent sexual side effects and anxious/depressive symptomatology. J. Sex. Med. 10(10), 2598–2603 (2013).  https://doi.org/10.1111/jsm.12269 PubMedCrossRefGoogle Scholar
  27. 27.
    D. Caruso, F. Abbiati, S. Giatti, S. Romano, L. Fusco, G. Cavaletti, R.C. Melcangi, Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma. J. Steroid Biochem. Mol. Biol. 146, 74–79 (2015).  https://doi.org/10.1016/j.jsbmb.2014.03.012 PubMedCrossRefGoogle Scholar
  28. 28.
    V.S. Williams, H.M. Edin, S.L. Hogue, S.E. Fehnel, D.S. Baldwin, Prevalence and impact of antidepressant-associated sexual dysfunction in three European countries: replication in a cross-sectional patient survey. J. Psychopharmacol. 24(4), 489–496 (2010).  https://doi.org/10.1177/0269881109102779 PubMedCrossRefGoogle Scholar
  29. 29.
    E.M. Haberfellner, A review of the assessment of antidepressant-induced sexual dysfunction used in randomized, controlled clinical trials. Pharmacopsychiatry 40(5), 173–182 (2007).  https://doi.org/10.1055/s-2007-985881 PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Reisman, Sexual Consequences of Post-SSRI Syndrome. Sexual Medicine Reviews (2017).  https://doi.org/10.1016/j.sxmr.2017.05.002
  31. 31.
    A. Bahrick, Persistence of sexual dysfunction side effects after discontinuation of antidepressant medications: emerging evidence. Open Psychol. J. 1, 9 (2008)CrossRefGoogle Scholar
  32. 32.
    A.B. Csoka, S. Shipko, Persistent sexualÿ side effects after SSRI discontinuation. Psychother. Psychosom. 75, 187–188 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    A.B. Csoka, A. Bahrick, O.P. Mehtonen, Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors. J. Sex. Med. 5(1), 227–233 (2008).  https://doi.org/10.1111/j.1743-6109.2007.00630.x PubMedCrossRefGoogle Scholar
  34. 34.
    R.J. Mathew, M.L. Weinman, Sexual dysfunctions in depression. Arch. Sex. Behav. 11(4), 323–328 (1982)PubMedCrossRefGoogle Scholar
  35. 35.
    R.C. Rosen, R.M. Lane, M. Menza, Effects of SSRIs on sexual function: a critical review. J. Clin. Psychopharmacol. 19(1), 67–85 (1999)PubMedCrossRefGoogle Scholar
  36. 36.
    E.O. Laumann, L.J. Waite, Sexual dysfunction among older adults: prevalence and risk factors from a nationally representative U.S. probability sample of men and women 57–85 years of age. J. Sex. Med. 5(10), 2300–2311 (2008).  https://doi.org/10.1111/j.1743-6109.2008.00974.x PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    J. Ben-Sheetrit, D. Aizenberg, A.B. Csoka, A. Weizman, H. Hermesh, Post-SSRI sexual dysfunction: Clinical characterization and preliminary assessment of contributory factors and dose–response relationship. J. Clin. Psychopharmacol. 35(3), 273–278 (2015).  https://doi.org/10.1097/jcp.0000000000000300 PubMedCrossRefGoogle Scholar
  38. 38.
    A. Bala, H.M. Tue Nguyen, W.J.G. Hellstrom, Post-SSRI Sexual Dysfunction: A Literature Review. Sexual medicine reviews (2017).  https://doi.org/10.1016/j.sxmr.2017.07.002
  39. 39.
    M.V. Lombardo, E. Ashwin, B. Auyeung, B. Chakrabarti, K. Taylor, G. Hackett, E.T. Bullmore, S. Baron-Cohen, Fetal testosterone influences sexually dimorphic gray matter in the human brain. J. Neurosci. 32(2), 674–680 (2012).  https://doi.org/10.1523/JNEUROSCI.4389-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    J.G. Pfaus, Pathways of sexual desire. J. Sex. Med. 6(6), 1506–1533 (2009).  https://doi.org/10.1111/j.1743-6109.2009.01309.x PubMedCrossRefGoogle Scholar
  41. 41.
    D. Santi, G. Spaggiari, L. Gilioli, F. Poti, M. Simoni, L. Casarini, Molecular basis of androgen action on human sexual desire. Mol. Cell. Endocrinol. (2017).  https://doi.org/10.1016/j.mce.2017.09.007
  42. 42.
    T.B. Poeppl, B. Langguth, R. Rupprecht, A. Safron, D. Bzdok, A.R. Laird, S.B. Eickhoff, The neural basis of sex differences in sexual behavior: A quantitative meta-analysis. Front. Neuroendocrinol. 43, 28–43 (2016).  https://doi.org/10.1016/j.yfrne.2016.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    G. Corona, A.M. Isidori, A. Aversa, A.L. Burnett, M. Maggi, Endocrinologic control of men’s sexual desire and arousal/erection. J. Sex. Med. 13(3), 317–337 (2016).  https://doi.org/10.1016/j.jsxm.2016.01.007 PubMedCrossRefGoogle Scholar
  44. 44.
    C.R. Mazzola, J.P. Mulhall, Impact of androgen deprivation therapy on sexual function. Asian J. Androl. 14(2), 198–203 (2012).  https://doi.org/10.1038/aja.2011.106 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    S.M. Stahl, C. Lee-Zimmerman, S. Cartwright, D.A. Morrissette, Serotonergic drugs for depression and beyond. Curr. Drug. Targets 14(5), 578–585 (2013)PubMedCrossRefGoogle Scholar
  46. 46.
    G. Bronner, S. Hassin-Baer, T. Gurevich, Sexual preoccupation behavior in Parkinson’s disease. J. Park. Dis. 7(1), 175–182 (2017).  https://doi.org/10.3233/JPD-160926 CrossRefGoogle Scholar
  47. 47.
    K.B. Bhattacharyya, M. Rosa-Grilo, Sexual dysfunctions in Parkinson’s disease: An underrated problem in a much discussed disorder. Int. Rev. Neurobiol. 134, 859–876 (2017).  https://doi.org/10.1016/bs.irn.2017.05.019 PubMedCrossRefGoogle Scholar
  48. 48.
    V. Voon, T.C. Napier, M.J. Frank, V. Sgambato-Faure, A.A. Grace, M. Rodriguez-Oroz, J. Obeso, E. Bezard, P.O. Fernagut, Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 16(3), 238–250 (2017).  https://doi.org/10.1016/S1474-4422(17)30004-2 PubMedCrossRefGoogle Scholar
  49. 49.
    F. Courtois, S. Carrier, K. Charvier, P.A. Guertin, N.M. Journel, The control of male sexual responses. Curr. Pharm. Des. 19(24), 4341–4356 (2013)PubMedCrossRefGoogle Scholar
  50. 50.
    A. Argiolas, M. Melis, Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog. Neurobiol. 108, 80–107 (2013).  https://doi.org/10.1016/j.pneurobio.2013.06.006 PubMedCrossRefGoogle Scholar
  51. 51.
    B. Capel, Sex in the 90s: SRY and the switch to the male pathway. Annu. Rev. Physiol. 60, 497–523 (1998)PubMedCrossRefGoogle Scholar
  52. 52.
    F. Zhao, H.L. Franco, K.F. Rodriguez, P.R. Brown, M.J. Tsai, S.Y. Tsai, H.H. Yao, Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357(6352), 717–720 (2017).  https://doi.org/10.1126/science.aai9136 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    A. Jost, B. Vigier, J. Prepin, J.P. Perchellet, Studies on sex differentiation in mammals. Recent. Prog. Horm. Res. 29, 1–41 (1973)PubMedGoogle Scholar
  54. 54.
    A.P. Arnold, R.A. Gorski, Gonadal steroid induction of structural sex differences in the central nervous system. Annu. Rev. Neurosci. 7, 413–442 (1984).  https://doi.org/10.1146/annurev.ne.07.030184.002213 PubMedCrossRefGoogle Scholar
  55. 55.
    B.M. Nugent, C.L. Wright, A.C. Shetty, G.E. Hodes, K.M. Lenz, A. Mahurkar, S.J. Russo, S.E. Devine, M.M. McCarthy, Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18(5), 690–697 (2015).  https://doi.org/10.1038/nn.3988 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    M.M. McCarthy, B.M. Nugent, Epigenetic contributions to hormonally-mediated sexual differentiation of the brain. J. Neuroendocrinol. 25, 1133–1140 (2013).  https://doi.org/10.1111/jne.12072 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    R. Wilen, F. Naftolin, Pubertal food intake, body length, weight, and composition in the well fed female rat. Pediatr. Res. 11(5), 701–703 (1977).  https://doi.org/10.1203/00006450-197705000-00016 PubMedCrossRefGoogle Scholar
  58. 58.
    M. Sanchez-Garrido, M. Tena-Sempere, Metabolic control of puberty: Roles of leptin and kisspeptins. Horm. Behav. 64(2), 187–194 (2013).  https://doi.org/10.1016/j.yhbeh.2013.01.014 PubMedCrossRefGoogle Scholar
  59. 59.
    B. Ellis, The hypothalamic-pituitary-gonadal axis: A switch-controlled, condition-sensitive system in the regulation of life history strategies. Horm. Behav. 64(2), 215–225 (2013).  https://doi.org/10.1016/j.yhbeh.2013.02.012 PubMedCrossRefGoogle Scholar
  60. 60.
    A.O. Brinkmann, Molecular basis of androgen insensitivity. Mol. Cell. Endocrinol. 179(1–2), 105–109 (2001)PubMedCrossRefGoogle Scholar
  61. 61.
    D. El-Maouche, W. Arlt, D.P. Merke, Congenital adrenal hyperplasia. Lancet 390(10108), 2194–2210 (2017).  https://doi.org/10.1016/S0140-6736(17)31431-9 PubMedCrossRefGoogle Scholar
  62. 62.
    C. Frye, E. Bo, G. Calamandrei, L. Calza, F. Dessi-Fulgheri, M. Fernandez, L. Fusani, O. Kah, M. Kajta, Y. Le Page, H.B. Patisaul, A. Venerosi, A.K. Wojtowicz, G.C. Panzica, Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol. 24(1), 144–159 (2012).  https://doi.org/10.1111/j.1365-2826.2011.02229.x PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    C.A. Frye, Endocrine-disrupting chemicals: Elucidating our understanding of their role in sex and gender-relevant end points. Vitam. Horm. 94, 41–98 (2014).  https://doi.org/10.1016/B978-0-12-800095-3.00003-1 PubMedCrossRefGoogle Scholar
  64. 64.
    E.M Hull, R.I Wood, K.E McKenna, The neurobiology of male sexual behavior. J Neill, D Pfaff(eds.) The Physiology of Reproduction. (Elsevier, Amsterdam, 2006) pp. 1729–1824.Google Scholar
  65. 65.
    R.G. Will, E.M. Hull, J.M. Dominguez, Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol. Biochem. Behav. 121, 115–123 (2014).  https://doi.org/10.1016/j.pbb.2014.02.005 PubMedCrossRefGoogle Scholar
  66. 66.
    M. Peeters, F. Giuliano, Central neurophysiology and dopaminergic control of ejaculation. Neurosci. Biobehav. Rev. 32(3), 438–453 (2008).  https://doi.org/10.1016/j.neubiorev.2007.07.013 PubMedCrossRefGoogle Scholar
  67. 67.
    C.J. Zeiss, Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet. Pathol. 42(6), 753–773 (2005).  https://doi.org/10.1354/vp.42-6-753 PubMedCrossRefGoogle Scholar
  68. 68.
    A. Bjorklund, O. Lindvall, A. Nobin, Evidence of an incerto-hypothalamic dopamine neurone system in the rat. Brain. Res. 89(1), 29–42 (1975)PubMedCrossRefGoogle Scholar
  69. 69.
    C.K. Wagner, M.J. Eaton, K.E. Moore, K.J. Lookingland, Efferent projections from the region of the medial zona incerta containing A13 dopaminergic neurons: a PHA-L anterograde tract-tracing study in the rat. Brain. Res. 677(2), 229–237 (1995)PubMedCrossRefGoogle Scholar
  70. 70.
    E.M. Hull, J.W. Muschamp, S. Sato, Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 83(2), 291–307 (2004).  https://doi.org/10.1016/j.physbeh.2004.08.018 PubMedCrossRefGoogle Scholar
  71. 71.
    M. Amalric, G.F. Koob, Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain. Res. 99, 209–226 (1993)PubMedCrossRefGoogle Scholar
  72. 72.
    E.M. Hull, D. Bitran, E.A. Pehek, R.K. Warner, L.C. Band, G.M. Holmes, Dopaminergic control of male sex behavior in rats: effects of an intracerebrally-infused agonist. Brain. Res. 370(1), 73–81 (1986)PubMedCrossRefGoogle Scholar
  73. 73.
    J.G. Pfaus, A.G. Phillips, Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 105(5), 727–743 (1991)PubMedCrossRefGoogle Scholar
  74. 74.
    D.S. Lorrain, J.V. Riolo, L. Matuszewich, E.M. Hull, Lateral hypothalamic serotonin inhibits nucleus accumbens dopamine: implications for sexual satiety. J. Neurosci. 19, 7648–7652 (1999)PubMedCrossRefGoogle Scholar
  75. 75.
    N.L. Brackett, P.M. Iuvone, D.A. Edwards, Midbrain lesions, dopamine and male sexual behavior. Behav. Brain. Res. 20(2), 231–240 (1986)PubMedCrossRefGoogle Scholar
  76. 76.
    J. Moses, J.A. Loucks, H.L. Watson, L. Matuszewich, E.M. Hull, Dopaminergic drugs in the medial preoptic area and nucleus accumbens: Effects on motor activity, sexual motivation, and sexual performance. Pharmacol. Biochem. Behav. 51, 681–686 (1995)PubMedCrossRefGoogle Scholar
  77. 77.
    T.E. Kippin, V. Sotiropoulos, J. Badih, J.G. Pfaus, Opposing roles of the nucleus accumbens and anterior lateral hypothalamic area in the control of sexual behaviour in the male rat. Eur. J. Neurosci. 19(3), 698–704 (2004)PubMedCrossRefGoogle Scholar
  78. 78.
    L.M. Creutz, M.F. Kritzer, Estrogen receptor-beta immunoreactivity in the midbrain of adult rats: regional, subregional, and cellular localization in the A10, A9, and A8 dopamine cell groups. J. Comp. Neurol. 446(3), 288–300 (2002)PubMedCrossRefGoogle Scholar
  79. 79.
    M.F. Kritzer, Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. J. Comp. Neurol. 379, 247–260 (1997)PubMedCrossRefGoogle Scholar
  80. 80.
    R.B. Simerly, M.C. Zee, J.W. Pendleton, D.B. Lubhan, K.S. Korach, Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc. Natl. Acad. Sci. USA 94, 14077–14082 (1997)PubMedCrossRefGoogle Scholar
  81. 81.
    J. Clarkson, A.E. Herbison, Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 23(4), 293–301 (2011).  https://doi.org/10.1111/j.1365-2826.2011.02107.x PubMedCrossRefGoogle Scholar
  82. 82.
    E.M. Hull, R.L. Meisel, B.D. Sachs, Male Sexual Behavior. in Hormones, Brain and Behaviored vol. 1, ed. by D.W. Pfaff, A.P. Arnold, A.M Etgen, S.E. Fahrbach, R.T Rubin (Academic Press, New York, 2002) pp. 1–134Google Scholar
  83. 83.
    J.M. Dominguez, E.M. Hull, Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav. 86, 356–368 (2005)PubMedCrossRefGoogle Scholar
  84. 84.
    E.M. Hull, J.M. Dominguez, Getting his act together: Roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain. Res. 1126, 66–75 (2006)PubMedCrossRefGoogle Scholar
  85. 85.
    M. Sica, M. Martini, C. Viglietti-Panzica, G.C. Panzica, Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice. Bmc. Neurosci. 10(78), 01–14 (2009).  https://doi.org/10.1186/1471-2202-10-78 CrossRefGoogle Scholar
  86. 86.
    G.C. Panzica, C. Viglietti-Panzica, M. Sica, S. Gotti, M. Martini, H. Pinos, B. Carrillo, P. Collado, Effects of gonadal hormones on central nitric oxide producing systems. Neuroscience 138, 987–995 (2006)PubMedCrossRefGoogle Scholar
  87. 87.
    S. Sato, C.S. Braham, S.K. Putnam, E.M. Hull, Neuronal nitric oxide synthase and gonadal steroid interaction in the MPOA of male rats: co-localization and testosterone-induced restoration of copulation and nNOS-immunoreactivity. Brain. Res. 1043, 205–213 (2005)PubMedCrossRefGoogle Scholar
  88. 88.
    K. Kocsis, J. Kiss, A. Csaki, B. Halasz, Location of putative glutamatergic neurons projecting to the medial preoptic area of the rat hypothalamus. Brain. Res. Bull. 61(4), 459–468 (2003)PubMedCrossRefGoogle Scholar
  89. 89.
    A. Tagliamonte, P. Tagliamonte, G.L. Gessa, B.B. Brodie, Compulsive sexual activity induced by p-chlorophenylalanine in normal and pinealectomized male rats. Science 166(3911), 1433–1435 (1969)PubMedCrossRefGoogle Scholar
  90. 90.
    A. Albinsson, G. Andersson, K. Andersson, J. Vega-Matuszczyk, K. Larsson, The effects of lesions in the mesencephalic raphe systems on male rat sexual behavior and locomotor activity. Behav. Brain. Res. 80(1–2), 57–63 (1996)PubMedCrossRefGoogle Scholar
  91. 91.
    B. Olivier, J.S. Chan, E.M. Snoeren, J.D. Olivier, J.G. Veening, C.H. Vinkers, M.D. Waldinger, R.S. Oosting, Differences in sexual behaviour in male and female rodents: role of serotonin. Curr. Top. Behav. Neurosci. 8, 15–36 (2011).  https://doi.org/10.1007/7854_2010_116 PubMedCrossRefGoogle Scholar
  92. 92.
    H.V.M. Steinbusch. Serotonin-immunoreactive neurons and their projections in the CNS. in Handbook of Chemical Neuroanatomy vol. 3 (Elsevier, Amsterdam, 1984) pp. 68–125.Google Scholar
  93. 93.
    Z. Sheng, J. Kawano, A. Yanai, R. Fujinaga, M. Tanaka, Y. Watanabe, K. Shinoda, Expression of estrogen receptors (alpha, beta) and androgen receptor in serotonin neurons of the rat and mouse dorsal raphe nuclei; sex and species differences. Neurosci. Res. 49(2), 185–196 (2004).  https://doi.org/10.1016/j.neures.2004.02.011 PubMedCrossRefGoogle Scholar
  94. 94.
    C.L. Bethea, K. Coleman, K. Phu, A.P. Reddy, A. Phu, Relationships between androgens, serotonin gene expression and innervation in male macaques. Neuroscience 274, 341–356 (2014).  https://doi.org/10.1016/j.neuroscience.2014.05.056 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    C.L. Bethea, K. Phu, Y. Belikova, S.C. Bethea, Localization and regulation of reproductive steroid receptors in the raphe serotonin system of male macaques. J. Chem. Neuroanat. 66-67, 19–27 (2015).  https://doi.org/10.1016/j.jchemneu.2015.04.001 PubMedCrossRefGoogle Scholar
  96. 96.
    R.C. Melcangi, L.M. Garcia-Segura, A.G. Mensah-Nyagan, Neuroactive steroids: state of the art and new perspectives. Cell. Mol. Life. Sci. 65(5), 777–797 (2008).  https://doi.org/10.1007/s00018-007-7403-5 PubMedCrossRefGoogle Scholar
  97. 97.
    D.C. Skinner, N.P. Evans, B. Delaleu, R.L. Goodman, P. Bouchard, A. Caraty, The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor. Proc. Natl. Acad. Sci. USA 95(18), 10978–10983 (1998)PubMedCrossRefGoogle Scholar
  98. 98.
    P. Micevych, K. Sinchak, Synthesis and function of hypothalamic neuroprogesterone in reproduction. Endocrinology 149(6), 2739–2742 (2008).  https://doi.org/10.1210/en.2008-0011 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    P. Micevych, K. Sinchak, The neurosteroid progesterone underlies estrogen positive feedback of the LH surge. Front Endocrinol. 2, 90 (2011).  https://doi.org/10.3389/fendo.2011.00090 CrossRefGoogle Scholar
  100. 100.
    M.A. Arevalo, I. Azcoitia, I. Gonzalez-Burgos, L.M. Garcia-Segura, Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm. Behav. (2015). https://doi.org/S0018-506X(15)00067-7Google Scholar
  101. 101.
    M. Frankfurt, V. Luine, The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm. Behav. (2015). https://doi.org/S0018-506X(15)00085-9Google Scholar
  102. 102.
    C. Guerra-Araiza, M.A. Amorim, I. Camacho-Arroyo, L.M. Garcia-Segura, Effects of progesterone and its reduced metabolites, dihydroprogesterone and tetrahydroprogesterone, on the expression and phosphorylation of glycogen synthase kinase-3 and the microtubule-associated protein tau in the rat cerebellum. Dev. Neurobiol. 67(4), 510–520 (2007).  https://doi.org/10.1002/dneu.20383 PubMedCrossRefGoogle Scholar
  103. 103.
    D.A. Velazquez-Zamora, L.M. Garcia-Segura, I. Gonzalez-Burgos, Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm. Behav. 61(4), 512–517 (2012).  https://doi.org/10.1016/j.yhbeh.2012.01.010 PubMedCrossRefGoogle Scholar
  104. 104.
    J.M. Bowers, J. Waddell, M.M. McCarthy, , A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol. Sex. Differ. 1(1), 8 (2010). https://doi.org/10.1186/2042-6410-1-8PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    L.A. Galea, , Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain. Res. Rev. 57(2), 332–341 (2008). https://doi.org/10.1016/j.brainresrev.2007.05.008PubMedCrossRefGoogle Scholar
  106. 106.
    R.C. Melcangi, I. Azcoitia, M. Ballabio, I. Cavarretta, L.C. Gonzalez, E. Leonelli, V. Magnaghi, S. Veiga, L.M. Garcia-Segura, , Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Prog. Neurobiol. 71(1), 57–66 (2003). https://doi.org/S0301008203001564PubMedCrossRefGoogle Scholar
  107. 107.
    R.C. Melcangi, S. Giatti, D. Calabrese, M. Pesaresi, G. Cermenati, N. Mitro, B. Viviani, L.M. Garcia-Segura, D. Caruso, , Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog. Neurobiol. 113, 56–69 (2014). https://doi.org/10.1016/j.pneurobio.2013.07.006PubMedCrossRefGoogle Scholar
  108. 108.
    F. Celotti, R.C. Melcangi, L. Martini, The 5 alpha-reductase in the brain: molecular aspects and relation to brain function. Front. Neuroendocrinol. 13(2), 163–215 (1992)PubMedGoogle Scholar
  109. 109.
    A.M. Traish, , 5alpha-reductases in human physiology: an unfolding story. Endocr. Pract. 18(6), 965–975 (2012). https://doi.org/10.4158/12108.RAPubMedCrossRefGoogle Scholar
  110. 110.
    M. Schumacher, C. Mattern, A. Ghoumari, J.P. Oudinet, P. Liere, F. Labombarda, R. Sitruk-Ware, A.F. De Nicola, R. Guennoun, , Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog. Neurobiol. 113, 6–39 (2014). https://doi.org/10.1016/j.pneurobio.2013.09.004PubMedCrossRefGoogle Scholar
  111. 111.
    S. Nag, S.S. Mokha, , Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates alpha2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 267, 122–134 (2014). https://doi.org/10.1016/j.neuroscience.2014.02.040PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    A. Almey, E. Cannell, K. Bertram, E. Filardo, T.A. Milner, W.G. Brake, Medial prefrontal cortical estradiol rapidly alters memory system bias in female rats: ultrastructural analysis reveals membrane-associated estrogen receptors as potential mediators. Endocrinology 155(11), 4422–4432 (2014).  https://doi.org/10.1210/en.2014-1463 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Y. Qin, Z. Chen, X. Han, H. Wu, Y. Yu, J. Wu, S. Liu, Y. Hou, Progesterone attenuates Abeta(25-35)-induced neuronal toxicity via JNK inactivation and progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway. J. Steroid Biochem. Mol. Biol. 154, 302–311 (2015).  https://doi.org/10.1016/j.jsbmb.2015.01.002 PubMedCrossRefGoogle Scholar
  114. 114.
    D. Belelli, J.J. Lambert, , Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6(7), 565–575 (2005). https://doi.org/10.1038/nrn1703PubMedCrossRefGoogle Scholar
  115. 115.
    J.J. Lambert, M.A. Cooper, R.D. Simmons, C.J. Weir, D. Belelli, , Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34(Suppl. 1), S48–S58 (2009). https://doi.org/10.1016/j.psyneuen.2009.08.009PubMedCrossRefGoogle Scholar
  116. 116.
    R.J. Handa, T.R. Pak, A.E. Kudwa, T.D. Lund, L. Hinds, , An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm. Behav. 53(5), 741–752 (2008). https://doi.org/10.1016/j.yhbeh.2007.09.012PubMedCrossRefGoogle Scholar
  117. 117.
    R.C. Melcangi, S. Giatti, L.M. Garcia-Segura, Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci. Biobehav. Rev. 67, 25–40 (2016).  https://doi.org/10.1016/j.neubiorev.2015.09.023 PubMedCrossRefGoogle Scholar
  118. 118.
    R.C. Melcangi, L.M. Garcia-Segura, Sex-specific therapeutic strategies based on neuroactive steroids: In search for innovative tools for neuroprotection. Horm. Behav. 57, 2–11 (2010).  https://doi.org/10.1016/j.yhbeh.2009.06.001 CrossRefGoogle Scholar
  119. 119.
    S. Giatti, L.M. Garcia-Segura, R.C. Melcangi, New steps forward in the neuroactive steroid field. J. Steroid Biochem. Mol. Biol. 153, 127–134 (2015).  https://doi.org/10.1016/j.jsbmb.2015.03.002 PubMedCrossRefGoogle Scholar
  120. 120.
    C.F. Zorumski, S.M. Paul, Y. Izumi, D.F. Covey, S. Mennerick, Neurosteroids, stress and depression: Potential therapeutic opportunities. Neurosci. Biobehav. Rev. 37(1), 109–122 (2013).  https://doi.org/10.1016/j.neubiorev.2012.10.005 PubMedCrossRefGoogle Scholar
  121. 121.
    M.S. Irwig, Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: A preliminary report. Alcohol. Clin. Exp. Res. 37(11), 1823–1826 (2013).  https://doi.org/10.1111/acer.12177 PubMedCrossRefGoogle Scholar
  122. 122.
    S. Kumar, P. Porcu, D.F. Werner, D.B. Matthews, J.L. Diaz-Granados, R.S. Helfand, A.L. Morrow, The role of GABA(A) receptors in the acute and chronic effects of ethanol: A decade of progress. Psychopharmacol. 205(4), 529–564 (2009).  https://doi.org/10.1007/s00213-009-1562-z CrossRefGoogle Scholar
  123. 123.
    S. Giatti, B. Foglio, S. Romano, M. Pesaresi, G. Panzica, L.M. Garcia-Segura, D. Caruso, R.C. Melcangi, , Effects of subchronic finasteride treatment and withdrawal on neuroactive steroid levels and their receptors in the male rat brain. Neuroendocrinology 103(6), 746–757 (2016). https://doi.org/10.1159/000442982PubMedCrossRefGoogle Scholar
  124. 124.
    J.T. Hsieh, S.C. Chen, H.J. Yu, H.C. Chang, Finasteride upregulates expression of androgen receptor in hyperplastic prostate and LNCaP cells: Implications for chemoprevention of prostate cancer. Prostate 71(10), 1115–1121 (2011).  https://doi.org/10.1002/pros.21325 PubMedCrossRefGoogle Scholar
  125. 125.
    C. Di Loreto, F. La Marra, G. Mazzon, E. Belgrano, C. Trombetta, S. Cauci, Immunohistochemical evaluation of androgen receptor and nerve structure density in human prepuce from patients with persistent sexual side effects after finasteride use for androgenetic alopecia. PLoS. One. 9(6), e100237 (2014).  https://doi.org/10.1371/journal.pone.0100237PONE-D-13-53954 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    A. Soggiu, C. Piras, V. Greco, P. Devoto, A. Urbani, L. Calzetta, M. Bortolato, P. Roncada, Exploring the neural mechanisms of finasteride: a proteomic analysis in the nucleus accumbens. Psychoneuroendocrinology 74, 387–396 (2016).  https://doi.org/10.1016/j.psyneuen.2016.10.001 PubMedCrossRefGoogle Scholar
  127. 127.
    R. Frau, L.J. Mosher, V. Bini, G. Pillolla, R. Pes, P. Saba, S. Fanni, P. Devoto, M. Bortolato, The neurosteroidogenic enzyme 5alpha-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology 63, 59–67 (2016).  https://doi.org/10.1016/j.psyneuen.2015.09.014 PubMedCrossRefGoogle Scholar
  128. 128.
    P. Devoto, R. Frau, V. Bini, G. Pillolla, P. Saba, G. Flore, M. Corona, F. Marrosu, M. Bortolato, Inhibition of 5alpha-reductase in the nucleus accumbens counters sensorimotor gating deficits induced by dopaminergic activation. Psychoneuroendocrinology 37(10), 1630–1645 (2012).  https://doi.org/10.1016/j.psyneuen.2011.09.018 PubMedCrossRefGoogle Scholar
  129. 129.
    I.G. Motofei, D.L. Rowland, M. Manea, S.R. Georgescu, I. Paunica, I. Sinescu, Safety profile of finasteride: distribution of Adverse Effects According to Structural and Informational Dichotomies of the Mind/Brain. Clin. Drug. Investig. 37(6), 511–517 (2017).  https://doi.org/10.1007/s40261-017-0501-8 PubMedCrossRefGoogle Scholar
  130. 130.
    I.G. Motofei, D.L. Rowland, S.R. Georgescu, M. Tampa, D. Baconi, E. Stefanescu, B.C. Baleanu, C. Balalau, V. Constantin, S. Paunica, Finasteride adverse effects in subjects with androgenic alopecia: A possible therapeutic approach according to the lateralization process of the brain. J. Dermatolog. Treat., 1–3 (2016).  https://doi.org/10.3109/09546634.2016.1161155
  131. 131.
    C.A. Ganzer, A.R. Jacobs, Emotional consequences of finasteride: Fool’s gold. Am. J. Mens Health (2016).  https://doi.org/10.1177/1557988316631624
  132. 132.
    K.E. Andersson, Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol. Rev. 63(4), 811–859 (2011).  https://doi.org/10.1124/pr.111.004515 PubMedCrossRefGoogle Scholar
  133. 133.
    H. Graf, M. Walter, C.D. Metzger, B. Abler, Antidepressant-related sexual dysfunction—perspectives from neuroimaging. Pharmacol. Biochem. Behav. 121, 138–145 (2014).  https://doi.org/10.1016/j.pbb.2013.12.003 PubMedCrossRefGoogle Scholar
  134. 134.
    B. Abler, A. Seeringer, A. Hartmann, G. Gron, C. Metzger, M. Walter, J. Stingl, Neural correlates of antidepressant-related sexual dysfunction: a placebo-controlled fMRI study on healthy males under subchronic paroxetine and bupropion. Neuropsychopharmacology 36(9), 1837–1847 (2011).  https://doi.org/10.1038/npp.2011.66 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    B. Abler, G. Gron, A. Hartmann, C. Metzger, M. Walter, Modulation of frontostriatal interaction aligns with reduced primary reward processing under serotonergic drugs. J. Neurosci. 32(4), 1329–1335 (2012).  https://doi.org/10.1523/jneurosci.5826-11.2012 PubMedCrossRefGoogle Scholar
  136. 136.
    R.H. Perlis, G. Laje, J.W. Smoller, M. Fava, A.J. Rush, F.J. McMahon, Genetic and clinical predictors of sexual dysfunction in citalopram-treated depressed patients. Neuropsychopharmacology 34(7), 1819–1828 (2009).  https://doi.org/10.1038/npp.2009.4 PubMedCrossRefGoogle Scholar
  137. 137.
    M.R. Safarinejad, Evaluation of endocrine profile and hypothalamic-pituitary-testis axis in selective serotonin reuptake inhibitor-induced male sexual dysfunction. J. Clin. Psychopharmacol. 28(4), 418–423 (2008).  https://doi.org/10.1097/JCP.0b013e31817e6f80 PubMedCrossRefGoogle Scholar
  138. 138.
    D.J. Lyons, R. Ammari, A. Hellysaz, C. Broberger, Serotonin and antidepressant SSRIs inhibit rat neuroendocrine dopamine neurons: Parallel actions in the lactotrophic axis. J. Neurosci. 36(28), 7392–7406 (2016).  https://doi.org/10.1523/jneurosci.4061-15.2016 PubMedCrossRefGoogle Scholar
  139. 139.
    A.B. Csoka, M. Szyf, Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73(5), 770–780 (2009).  https://doi.org/10.1016/j.mehy.2008.10.039 PubMedCrossRefGoogle Scholar
  140. 140.
    N.K. Popova, T.G. Amstislavskaya, Involvement of the 5-HT(1A) and 5-HT(1B) serotonergic receptor subtypes in sexual arousal in male mice. Psychoneuroendocrinology 27(5), 609–618 (2002)PubMedCrossRefGoogle Scholar
  141. 141.
    P. Zheng, , Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Prog. Neurobiol. 89(2), 134–152 (2009). https://doi.org/10.1016/j.pneurobio.2009.07.001PubMedCrossRefGoogle Scholar
  142. 142.
    P. Porcu, A.M. Barron, C.A. Frye, A.A. Walf, S.Y. Yang, X.Y. He, A.L. Morrow, G.C. Panzica, R.C. Melcangi, Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J. Neuroendocrinol. 28(2) (2016).  https://doi.org/10.1111/jne.12351
  143. 143.
    C. Schule, E. Romeo, D.P. Uzunov, D. Eser, F. di Michele, T.C. Baghai, A. Pasini, M. Schwarz, H. Kempter, R. Rupprecht, Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3alpha-hydroxysteroid dehydrogenase activity. Mol. Psychiatry 11(3), 261–272 (2006).  https://doi.org/10.1038/sj.mp.4001782 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Neuroscienze “Rita Levi Montalcini”Università degli studi di Torino, Neuroscience Institute Cavallieri Ottolenghi (NICO)OrbassanoItaly

Personalised recommendations