, Volume 59, Issue 2, pp 260–274 | Cite as

Irisin in metabolic diseases

  • Stergios A. Polyzos
  • Athanasios D. Anastasilakis
  • Zoe A. Efstathiadou
  • Polyzois Makras
  • Nikolaos Perakakis
  • Jannis Kountouras
  • Christos S. Mantzoros



Irisin is a myokine/adipokine induced by the exercise in mice and humans, which is proposed to induce “browning” of white adipose tissue, its primary target, thus increasing thermogenesis and energy expenditure. Since its identification, irisin has been linked to favorable effects on metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), lipid metabolism and cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and metabolic bone diseases. Generally, despite the promising profile of irisin in rodents, its effects on human are less recognized.


Most, but not all studies show a positive association between irisin and indices of adiposity. In T2DM, NAFLD, and CVD, most observational studies reported lower irisin levels in patients than controls. Regarding metabolic bone diseases, irisin is positively associated with bone mineral density and strength in athletes, and inversely associated with osteoporotic fractures in postmenopausal osteoporosis. In PCOS, data remain largely conflicting. Irisin does not seem to be further reduced when two metabolic diseases, e.g., T2DM and NAFLD, or obesity and NAFLD exist though more data are needed. Furthermore, it seems that diverse confounders may have affected the results of different clinical studies.


Irisin remains an appealing molecule from a pathophysiological point of view and an appealing therapeutic target for metabolic diseases, albeit much research is still needed.


Cardiovascular disease Diabetes Irisin Myokine Nonalcoholic fatty liver disease Obesity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    S.A. Polyzos, J. Kountouras, K. Shields, C.S. Mantzoros, Irisin: a renaissance in metabolism? Metabolism 62, 1037–1044 (2013)PubMedCrossRefGoogle Scholar
  2. 2.
    P. Bostrom, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Bostrom, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Hojlund, S.P. Gygi, B.M. Spiegelman, A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    A. Roca-Rivada, C. Castelao, L.L. Senin, M.O. Landrove, J. Baltar, A. Belen Crujeiras, L.M. Seoane, F.F. Casanueva, M. Pardo, FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE 8, e60563 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    F. Villarroya, Irisin, turning up the heat. Cell Metab. 15, 277–278 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    M.M. Reza, N. Subramaniyam, C.M. Sim, X. Ge, D. Sathiakumar, C. McFarlane, M. Sharma, R. Kambadur, Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 8, 1104 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    N. Perakakis, G.A. Triantafyllou, J.M. Fernandez-Real, J.Y. Huh, K.H. Park, J. Seufert, C.S. Mantzoros, Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 13, 324–337 (2017)PubMedCrossRefGoogle Scholar
  7. 7.
    J.I. Castillo-Quan, From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis. Model Mech. 5, 293–295 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    P. Puigserver, Z. Wu, C.W. Park, R. Graves, M. Wright, B.M. Spiegelman, A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998)PubMedCrossRefGoogle Scholar
  9. 9.
    E. Albrecht, F. Norheim, B. Thiede, T. Holen, T. Ohashi, L. Schering, S. Lee, J. Brenmoehl, S. Thomas, C.A. Drevon, H.P. Erickson, S. Maak, Irisin—a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    H.P. Erickson, Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2, 289–293 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    S.A. Polyzos, H. Mathew, C.S. Mantzoros, Irisin: a true, circulating hormone. Metabolism 64, 1611–1618 (2015)PubMedCrossRefGoogle Scholar
  12. 12.
    S.A. Polyzos, C.S. Mantzoros, An update on the validity of irisin assays and the link between irisin and hepatic metabolism. Metabolism 64, 937–942 (2015)PubMedCrossRefGoogle Scholar
  13. 13.
    J.Y. Huh, G. Panagiotou, V. Mougios, M. Brinkoetter, M.T. Vamvini, B.E. Schneider, C.S. Mantzoros, FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61, 1725–1738 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    T. Kurdiova, M. Balaz, M. Vician, D. Maderova, M. Vlcek, L. Valkovic, M. Srbecky, R. Imrich, O. Kyselovicova, V. Belan, I. Jelok, C. Wolfrum, I. Klimes, M. Krssak, E. Zemkova, D. Gasperikova, J. Ukropec, B. Ukropcova, Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J. Physiol. 592, 1091–1107 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    J.M. Moreno-Navarrete, F. Ortega, M. Serrano, E. Guerra, G. Pardo, F. Tinahones, W. Ricart, J.M. Fernandez-Real, Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 98, E769–E778 (2013)PubMedCrossRefGoogle Scholar
  16. 16.
    J. Zhang, P. Valverde, X. Zhu, D. Murray, Y. Wu, L. Yu, H. Jiang, M.M. Dard, J. Huang, Z. Xu, Q. Tu, J. Chen, Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res. 5, 16056 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Y. Zhang, R. Li, Y. Meng, S. Li, W. Donelan, Y. Zhao, L. Qi, M. Zhang, X. Wang, T. Cui, L.J. Yang, D. Tang, Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63, 514–525 (2014)PubMedCrossRefGoogle Scholar
  18. 18.
    S. Gao, F. Li, H. Li, Y. Huang, Y. Liu, Y. Chen, Effects and molecular mechanism of GST-Irisin on lipolysis and autocrine function in 3T3-L1 adipocytes. PLoS ONE 11, e0147480 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    X.Q. Xiong, D. Chen, H.J. Sun, L. Ding, J.J. Wang, Q. Chen, Y.H. Li, Y.B. Zhou, Y. Han, F. Zhang, X.Y. Gao, Y.M. Kang, G.Q. Zhu, FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta 1852, 1867–1875 (2015)PubMedCrossRefGoogle Scholar
  20. 20.
    Z.D. Butt, J.D. Hackett, H. Volkoff, Irisin in goldfish (Carassius auratus): effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression. Peptides 90, 27–36 (2017)PubMedCrossRefGoogle Scholar
  21. 21.
    L. Sundarrajan, C. Yeung, L. Hahn, L.P. Weber, S. Unniappan, Irisin regulates cardiac physiology in zebrafish. PLoS ONE 12, e0181461 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    M. Schlogl, P. Piaggi, S.B. Votruba, M. Walter, J. Krakoff, M.S. Thearle, Increased 24-hour ad libitum food intake is associated with lower plasma irisin concentrations the following morning in adult humans. Appetite 90, 154–159 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    J.Y. Huh, F. Dincer, E. Mesfum, C.S. Mantzoros, Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int. J. Obes. 38, 1538–1544 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Raschke, M. Elsen, H. Gassenhuber, M. Sommerfeld, U. Schwahn, B. Brockmann, R. Jung, U. Wisloff, A.E. Tjonna, T. Raastad, J. Hallen, F. Norheim, C.A. Drevon, T. Romacho, K. Eckardt, J. Eckel, Evidence against a beneficial effect of irisin in humans. PLoS ONE 8, e73680 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    C. Zhang, Z. Ding, G. Lv, J. Li, P. Zhou, J. Zhang, Lower irisin level in patients with type 2 diabetes mellitus: a case-control study and meta-analysis. J. Diabetes 8, 56–62 (2016)PubMedCrossRefGoogle Scholar
  26. 26.
    P. Lee, J.D. Linderman, S. Smith, R.J. Brychta, J. Wang, C. Idelson, R.M. Perron, C.D. Werner, G.Q. Phan, U.S. Kammula, E. Kebebew, K. Pacak, K.Y. Chen, F.S. Celi, Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014)PubMedCrossRefGoogle Scholar
  27. 27.
    A.B. Crujeiras, M. Pardo, R.R. Arturo, S. Navas-Carretero, M.A. Zulet, J.A. Martinez, F.F. Casanueva, Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am. J. Hum. Biol. 26, 198–207 (2014)PubMedCrossRefGoogle Scholar
  28. 28.
    C. Gutierrez-Repiso, S. Garcia-Serrano, F. Rodriguez-Pacheco, E. Garcia-Escobar, J.J. Haro-Mora, J. Garcia-Arnes, S. Valdes, M. Gonzalo, F. Soriguer, F.J. Moreno-Ruiz, A. Rodriguez-Canete, A. Martinez-Ferriz, J.S. Santoyo, V. Perez-Valero, E. Garcia-Fuentes, FNDC5 could be regulated by leptin in adipose tissue. Eur. J. Clin. Invest. 44, 918–925 (2014)PubMedCrossRefGoogle Scholar
  29. 29.
    A.E. Huerta, P.L. Prieto-Hontoria, M. Fernandez-Galilea, N. Sainz, M. Cuervo, J.A. Martinez, M.J. Moreno-Aliaga, Circulating irisin and glucose metabolism in overweight/obese women: effects of alpha-lipoic acid and eicosapentaenoic acid. J. Physiol. Biochem. 71, 547–558 (2015)PubMedCrossRefGoogle Scholar
  30. 30.
    D. Loffler, U. Muller, K. Scheuermann, D. Friebe, J. Gesing, J. Bielitz, S. Erbs, K. Landgraf, I.V. Wagner, W. Kiess, A. Korner, Serum irisin levels are regulated by acute strenuous exercise. J. Clin. Endocrinol. Metab. 100, 1289–1299 (2015)PubMedCrossRefGoogle Scholar
  31. 31.
    M. Pardo, A.B. Crujeiras, M. Amil, Z. Aguera, S. Jimenez-Murcia, R. Banos, C. Botella, R. de la Torre, X. Estivill, A.B. Fagundo, J.M. Fernandez-Real, J.C. Fernandez-Garcia, G. Fruhbeck, J. Gomez-Ambrosi, R. Rodriguez, F.J. Tinahones, F. Fernandez-Aranda, F.F. Casanueva, Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int. J. Endocrinol. 2014, 857270 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    A. Stengel, T. Hofmann, M. Goebel-Stengel, U. Elbelt, P. Kobelt, B.F. Klapp, Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39, 125–130 (2013)PubMedCrossRefGoogle Scholar
  33. 33.
    A.B. Crujeiras, M.A. Zulet, P. Lopez-Legarrea, R. de la Iglesia, M. Pardo, M.C. Carreira, J.A. Martinez, F.F. Casanueva, Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism 63, 520–531 (2014)PubMedCrossRefGoogle Scholar
  34. 34.
    J. Huang, S. Wang, F. Xu, D. Wang, H. Yin, Q. Lai, J. Liao, X. Hou, M. Hu, Exercise training with dietary restriction enhances circulating irisin level associated with increasing endothelial progenitor cell number in obese adults: an intervention study. PeerJ 5, e3669 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    B. Palacios-Gonzalez, F. Vadillo-Ortega, E. Polo-Oteyza, T. Sanchez, M. Ancira-Moreno, S. Romero-Hidalgo, N. Meraz, B. Antuna-Puente, Irisin levels before and after physical activity among school-age children with different BMI: a direct relation with leptin. Obesity 23, 729–732 (2015)PubMedCrossRefGoogle Scholar
  36. 36.
    E. Nigro, O. Scudiero, M. Ludovica Monaco, R. Polito, P. Schettino, A. Grandone, L. Perrone, E. Miraglia Del Giudice, A. Daniele, Adiponectin profile and Irisin expression in Italian obese children: association with insulin-resistance. Cytokine 94, 8–13 (2017)PubMedCrossRefGoogle Scholar
  37. 37.
    A. Gavrieli, G. Panagiotou, C.S. Mantzoros, Leptin administration in physiological or pharmacological doses does not alter circulating irisin levels in humans. Int. J. Obes. 40, 1461–1463 (2016)CrossRefGoogle Scholar
  38. 38.
    L. Mo, J. Shen, Q. Liu, Y. Zhang, J. Kuang, S. Pu, S. Cheng, M. Zou, W. Jiang, C. Jiang, A. Qu, J. He, Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol. Endocrinol. 30, 533–542 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    T.Y. Liu, C.X. Shi, R. Gao, H.J. Sun, X.Q. Xiong, L. Ding, Q. Chen, Y.H. Li, J.J. Wang, Y.M. Kang, G.Q. Zhu, Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. 129, 839–850 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    A. Natalicchio, N. Marrano, G. Biondi, R. Spagnuolo, R. Labarbuta, I. Porreca, A. Cignarelli, M. Bugliani, P. Marchetti, S. Perrini, L. Laviola, F. Giorgino, The myokine irisin is released in response to saturated fatty acids and promotes pancreatic beta-cell survival and insulin secretion. Diabetes 66, 2849–2856 (2017)PubMedCrossRefGoogle Scholar
  41. 41.
    J.J. Liu, M.D. Wong, W.C. Toy, C.S. Tan, S. Liu, X.W. Ng, S. Tavintharan, C.F. Sum, S.C. Lim, Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complicat. 27, 365–369 (2013)PubMedCrossRefGoogle Scholar
  42. 42.
    M. Yang, P. Chen, H. Jin, X. Xie, T. Gao, L. Yang, X. Yu, Circulating levels of irisin in middle-aged first-degree relatives of type 2 diabetes mellitus—correlation with pancreatic beta-cell function. Diabetol. Metab. Syndr. 6, 133 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    S. Qiu, X. Cai, H. Yin, M. Zugel, Z. Sun, J.M. Steinacker, U. Schumann, Association between circulating irisin and insulin resistance in non-diabetic adults: a meta-analysis. Metabolism 65, 825–834 (2016)PubMedCrossRefGoogle Scholar
  44. 44.
    N.M. Al-Daghri, K.M. Alkharfy, S. Rahman, O.E. Amer, B. Vinodson, S. Sabico, M.K. Piya, A.L. Harte, P.G. McTernan, M.S. Alokail, G.P. Chrousos, Irisin as a predictor of glucose metabolism in children: sexually dimorphic effects. Eur. J. Clin. Invest. 44, 119–124 (2014)PubMedCrossRefGoogle Scholar
  45. 45.
    G. Sesti, F. Andreozzi, T.V. Fiorentino, G.C. Mannino, A. Sciacqua, M.A. Marini, F. Perticone, High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta. Diabetol. 51, 705–713 (2014)PubMedCrossRefGoogle Scholar
  46. 46.
    J.H. Huh, S.V. Ahn, J.H. Choi, S.B. Koh, C.H. Chung, High serum irisin level as an independent predictor of diabetes mellitus: a longitudinal population-based study. Medicine 95, e3742 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    I. Ates, M.F. Arikan, K. Erdogan, M. Kaplan, M. Yuksel, C. Topcuoglu, N. Yilmaz, S. Guler, Factors associated with increased irisin levels in the type 1 diabetes mellitus. Endocr. Regul. 51, 1–7 (2017)PubMedCrossRefGoogle Scholar
  48. 48.
    D. Espes, J. Lau, P.O. Carlsson, Increased levels of irisin in people with long-standing type 1 diabetes. Diabet. Med. 32, 1172–1176 (2015)PubMedCrossRefGoogle Scholar
  49. 49.
    Y. Assyov, A. Gateva, A. Tsakova, Z. Kamenov, Irisin in the glucose continuum. Exp. Clin. Endocrinol. Diabetes 124, 22–27 (2016)PubMedGoogle Scholar
  50. 50.
    A. Shoukry, S.M. Shalaby, S. El-Arabi Bdeer, A.A. Mahmoud, M.M. Mousa, A. Khalifa, Circulating serum irisin levels in obesity and type 2 diabetes mellitus. IUBMB Life 68, 544–556 (2016)PubMedCrossRefGoogle Scholar
  51. 51.
    W. Hu, R. Wang, J. Li, J. Zhang, W. Wang, Association of irisin concentrations with the presence of diabetic nephropathy and retinopathy. Ann. Clin. Biochem. 53, 67–74 (2016)PubMedCrossRefGoogle Scholar
  52. 52.
    E.G. Khidr, S.S. Ali, M.M. Elshafey, O.A. Fawzy, Association of irisin and FNDC5 rs16835198 G>T gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy. An Egyptian pilot study. Gene 626, 26–31 (2017)PubMedCrossRefGoogle Scholar
  53. 53.
    Z. Li, G. Wang, Y.J. Zhu, C.G. Li, Y.Z. Tang, Z.H. Jiang, M. Yang, C.L. Ni, L.M. Chen, W.Y. Niu, The relationship between circulating irisin levels and tissues AGE accumulation in type 2 diabetes patients. Biosci. Rep. 37, (2017)Google Scholar
  54. 54.
    X.L. Du, W.X. Jiang, Z.T. Lv, Lower circulating irisin level in patients with diabetes mellitus: a systematic review and meta-analysis. Horm. Metab. Res. 48, 644–652 (2016)PubMedCrossRefGoogle Scholar
  55. 55.
    B. Garcia-Fontana, R. Reyes-Garcia, S. Morales-Santana, V. Avila-Rubio, A. Munoz-Garach, P. Rozas-Moreno, M. Munoz-Torres, Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine 52, 54–62 (2016)PubMedCrossRefGoogle Scholar
  56. 56.
    N.M. Al-Daghri, A.K. Mohammed, O.S. Al-Attas, O.E. Amer, M. Clerici, A. Alenad, M.S. Alokail, SNPs in FNDC5 (irisin) are associated with obesity and modulation of glucose and lipid metabolism in Saudi subjects. Lipids Health Dis. 15, 54 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    A. Akour, V. Kasabri, N. Boulatova, Y. Bustanji, R. Naffa, D. Hyasat, N. Khawaja, H. Bustanji, A. Zayed, M. Momani, Levels of metabolic markers in drug-naive prediabetic and type 2 diabetic patients. Acta Diabetol. 54, 163–170 (2017)PubMedCrossRefGoogle Scholar
  58. 58.
    I.D. Duran, N.E. Gulcelik, M. Unal, C. Topcuoglu, S. Sezer, M.M. Tuna, D. Berker, S. Guler, Irisin levels in the progression of diabetes in sedentary women. Clin. Biochem. 48, 1268–1272 (2015)PubMedCrossRefGoogle Scholar
  59. 59.
    Y.K. Choi, M.K. Kim, K.H. Bae, H.A. Seo, J.Y. Jeong, W.K. Lee, J.G. Kim, I.K. Lee, K.G. Park, Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin. Pract. 100, 96–101 (2013)PubMedCrossRefGoogle Scholar
  60. 60.
    J.J. Liu, S. Liu, M.D. Wong, C.S. Tan, S. Tavintharan, C.F. Sum, S.C. Lim, Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J. Diabetes Complicat. 28, 208–213 (2014)PubMedCrossRefGoogle Scholar
  61. 61.
    C. Wang, L. Wang, J. Liu, J. Song, Y. Sun, P. Lin, K. Liang, F. Liu, T. He, Z. Sun, X. Hou, L. Chen, Irisin modulates the association of interleukin-17A with the presence of non-proliferative diabetic retinopathy in patients with type 2 diabetes. Endocrine 53, 459–464 (2016)PubMedCrossRefGoogle Scholar
  62. 62.
    H.H. Wang, X.W. Zhang, W.K. Chen, Q.X. Huang, Q.Q. Chen, Relationship between serum irisin levels and urinary albumin excretion in patients with type 2 diabetes. J. Diabetes Complicat. 29, 384–389 (2015)PubMedCrossRefGoogle Scholar
  63. 63.
    L. Xiang, G. Xiang, L. Yue, J. Zhang, L. Zhao, Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis 235, 328–333 (2014)PubMedCrossRefGoogle Scholar
  64. 64.
    M. Zhang, P. Chen, S. Chen, Q. Sun, Q.C. Zeng, J.Y. Chen, Y.X. Liu, X.H. Cao, M. Ren, J.K. Wang, The association of new inflammatory markers with type 2 diabetes mellitus and macrovascular complications: a preliminary study. Eur. Rev. Med Pharmacol. Sci. 18, 1567–1572 (2014)PubMedGoogle Scholar
  65. 65.
    S. Shelbaya, M.M. Abushady, M.S. Nasr, M.M. Bekhet, Y.A. Mageed, M. Abbas, Study of irisin hormone level in type 2 diabetic patients and patients with diabetic nephropathy. Curr. Diabetes Rev. (2017).
  66. 66.
    D.J. Li, F. Huang, W.J. Lu, G.J. Jiang, Y.P. Deng, F.M. Shen, Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol. 213, 711–721 (2015)CrossRefGoogle Scholar
  67. 67.
    H. Duan, B. Ma, X. Ma, H. Wang, Z. Ni, B. Wang, X. Li, P. Jiang, M. Umar, M. Li, Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int. J. Biol. Macromol. 84, 457–463 (2016)PubMedCrossRefGoogle Scholar
  68. 68.
    C. Xin, J. Liu, J. Zhang, D. Zhu, H. Wang, L. Xiong, Y. Lee, J. Ye, K. Lian, C. Xu, L. Zhang, Q. Wang, Y. Liu, L. Tao, Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes. 40, 443–451 (2016)CrossRefGoogle Scholar
  69. 69.
    Z. Yang, X. Chen, Y. Chen, Q. Zhao, Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. Int. J. Clin. Exp. Pathol. 8, 6490–6497 (2015)PubMedPubMedCentralGoogle Scholar
  70. 70.
    D. Zhu, H. Wang, J. Zhang, X. Zhang, C. Xin, F. Zhang, Y. Lee, L. Zhang, K. Lian, W. Yan, X. Ma, Y. Liu, L. Tao, Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell Cardiol. 87, 138–147 (2015)PubMedCrossRefGoogle Scholar
  71. 71.
    S. Liu, F. Du, X. Li, M. Wang, R. Duan, J. Zhang, Y. Wu, Q. Zhang, Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic beta cells. PLoS ONE 12, e0175498 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Y. Pang, H. Zhu, J. Xu, L. Yang, L. Liu, J. Li, Beta-arrestin-2 is involved in irisin induced glucose metabolism in type 2 diabetes via p38 MAPK signaling. Exp. Cell Res. 360, 199–204 (2017)PubMedCrossRefGoogle Scholar
  73. 73.
    O. Erol, N. Erkal, H.Y. Ellidag, B.S. Isenlik, O. Aydin, A.U. Derbent, N. Yilmaz, Irisin as an early marker for predicting gestational diabetes mellitus: a prospective study. J. Matern. Fetal Neonatal Med. 29, 3590–3595 (2016)PubMedCrossRefGoogle Scholar
  74. 74.
    T. Ebert, H. Stepan, S. Schrey, S. Kralisch, J. Hindricks, L. Hopf, M. Platz, U. Lossner, B. Jessnitzer, S. Drewlo, M. Bluher, M. Stumvoll, M. Fasshauer, Serum levels of irisin in gestational diabetes mellitus during pregnancy and after delivery. Cytokine 65, 153–158 (2014)PubMedCrossRefGoogle Scholar
  75. 75.
    M.K. Piya, A.L. Harte, K. Sivakumar, G. Tripathi, P.D. Voyias, S. James, S. Sabico, N.M. Al-Daghri, P. Saravanan, T.M. Barber, S. Kumar, M. Vatish, P.G. McTernan, The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes. Am. J. Physiol. Endocrinol. Metab. 306, E512–E518 (2014)PubMedCrossRefGoogle Scholar
  76. 76.
    M. Kuzmicki, B. Telejko, D. Lipinska, J. Pliszka, M. Szamatowicz, J. Wilk, M. Zbucka-Kretowska, P. Laudanski, A. Kretowski, M. Gorska, J. Szamatowicz, Serum irisin concentration in women with gestational diabetes. Gynecol. Endocrinol. 30, 636–639 (2014)PubMedCrossRefGoogle Scholar
  77. 77.
    U.M. Ural, S.B. Sahin, Y.B. Tekin, M.C. Cure, H. Sezgin, Alteration of maternal serum irisin levels in gestational diabetes mellitus. Ginekol. Pol. 87, 395–398 (2016)PubMedCrossRefGoogle Scholar
  78. 78.
    N. Wawrusiewicz-Kurylonek, B. Telejko, M. Kuzmicki, A. Sobota, D. Lipinska, J. Pliszka, B. Raczkowska, P. Kuc, R. Urban, J. Szamatowicz, A. Kretowski, P. Laudanski, M. Gorska, Increased maternal and cord blood betatrophin in gestational diabetes. PLoS ONE 10, e0131171 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    M.A. Yuksel, M. Oncul, A. Tuten, M. Imamoglu, A.S. Acikgoz, M. Kucur, R. Madazli, Maternal serum and fetal cord blood irisin levels in gestational diabetes mellitus. Diabetes Res Clin. Pract. 104, 171–175 (2014)PubMedCrossRefGoogle Scholar
  80. 80.
    L. Zhao, J. Li, Z.L. Li, J. Yang, M.L. Li, G.L. Wang, Circulating irisin is lower in gestational diabetes mellitus. Endocr. J. 62, 921–926 (2015)PubMedCrossRefGoogle Scholar
  81. 81.
    B. Usluogullari, C.A. Usluogullari, F. Balkan, M. Orkmez, Role of serum levels of irisin and oxidative stress markers in pregnant women with and without gestational diabetes. Gynecol. Endocrinol. 33, 405–407 (2017)PubMedCrossRefGoogle Scholar
  82. 82.
    M. Hernandez-Trejo, G. Garcia-Rivas, A. Torres-Quintanilla, E. Laresgoiti-Servitje, Relationship between irisin concentration and serum cytokines in mother and newborn. PLoS ONE 11, e0165229 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    K.E. Joung, K.H. Park, A. Filippaios, F. Dincer, H. Christou, C.S. Mantzoros, Cord blood irisin levels are positively correlated with birth weight in newborn infants. Metabolism 64, 1507–1514 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    S. Aydin, T. Kuloglu, S. Aydin, M.N. Eren, A. Celik, M. Yilmaz, M. Kalayci, I. Sahin, O. Gungor, A. Gurel, M. Ogeturk, O. Dabak, Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides 52, 68–73 (2014)PubMedCrossRefGoogle Scholar
  85. 85.
    S. Aydin, T. Kuloglu, S. Aydin, M. Kalayci, M. Yilmaz, T. Cakmak, S. Albayrak, S. Gungor, N. Colakoglu, I.H. Ozercan, A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61, 130–136 (2014)PubMedCrossRefGoogle Scholar
  86. 86.
    J. Lv, Y. Pan, X. Li, D. Cheng, H. Ju, J. Tian, H. Shi, Y. Zhang, Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm. Metab. Res. 47, 591–595 (2015)PubMedCrossRefGoogle Scholar
  87. 87.
    M.J. Park, D.I. Kim, J.H. Choi, Y.R. Heo, S.H. Park, New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal. 27, 1831–1839 (2015)PubMedCrossRefGoogle Scholar
  88. 88.
    Y. Nie, D. Liu, N-glycosylation is required for FDNC5 stabilization and irisin secretion. Biochem. J. 474, 3167–3177 (2017)PubMedCrossRefGoogle Scholar
  89. 89.
    W.Y. So, P.S. Leung, Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int. J. Biochem. Cell Biol. 78, 237–247 (2016)PubMedCrossRefGoogle Scholar
  90. 90.
    H. Tang, R. Yu, S. Liu, B. Huwatibieke, Z. Li, W. Zhang, Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine 6, 139–148 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    S.A. Polyzos, J. Kountouras, C.S. Mantzoros, Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 64, 60–78 (2015)PubMedCrossRefGoogle Scholar
  92. 92.
    S.A. Polyzos, J. Kountouras, C. Zavos, Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr. Mol. Med. 9, 299–314 (2009)PubMedCrossRefGoogle Scholar
  93. 93.
    S. Batirel, P. Bozaykut, E. Mutlu Altundag, N. Kartal Ozer, C.S. Mantzoros, The effect of irisin on antioxidant system in liver. Free Radic. Biol. Med. 75(Suppl 1), S16 (2014)PubMedCrossRefGoogle Scholar
  94. 94.
    S. Aydin, M. Ogeturk, T. Kuloglu, A. Kavakli, S. Aydin, Effect of carnosine supplementation on apoptosis and irisin, total oxidant and antioxidants levels in the serum, liver and lung tissues in rats exposed to formaldehyde inhalation. Peptides 64, 14–23 (2014)PubMedCrossRefGoogle Scholar
  95. 95.
    G. Shi, N. Tang, J. Qiu, D. Zhang, F. Huang, Y. Cheng, K. Ding, W. Li, P. Zhang, X. Tan, Irisin stimulates cell proliferation and invasion by targeting the PI3K/AKT pathway in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 493, 585–591 (2017)PubMedCrossRefGoogle Scholar
  96. 96.
    S.A. Polyzos, J. Kountouras, A.D. Anastasilakis, E.V. Geladari, C.S. Mantzoros, Irisin in patients with nonalcoholic fatty liver disease. Metabolism 63, 207–217 (2014)PubMedCrossRefGoogle Scholar
  97. 97.
    D. Kraus, Q. Yang, D. Kong, A.S. Banks, L. Zhang, J.T. Rodgers, E. Pirinen, T.C. Pulinilkunnil, F. Gong, Y.C. Wang, Y. Cen, A.A. Sauve, J.M. Asara, O.D. Peroni, B.P. Monia, S. Bhanot, L. Alhonen, P. Puigserver, B.B. Kahn, Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    S. Petta, L. Valenti, G. Svegliati-Baroni, M. Ruscica, R.M. Pipitone, P. Dongiovanni, C. Rychlicki, N. Ferri, C. Camma, A.L. Fracanzani, I. Pierantonelli, V. Di Marco, M. Meroni, D. Giordano, S. Grimaudo, M. Maggioni, D. Cabibi, S. Fargion, A. Craxi, Fibronectin type iii domain-containing protein 5 rs3480 A>G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 102, 2660–2669 (2017)PubMedCrossRefGoogle Scholar
  99. 99.
    M. Shanaki, N. Moradi, S. Emamgholipour, R. Fadaei, H. Poustchi, Lower circulating irisin is associated with nonalcoholic fatty liver disease and type 2 diabetes. Diabetes Metab. Syndr. (2017).
  100. 100.
    E.S. Choi, M.K. Kim, M.K. Song, J.M. Kim, E.S. Kim, W.J. Chung, K.S. Park, K.B. Cho, J.S. Hwang, B.K. Jang, Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS ONE 9, e110680 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    H.J. Zhang, X.F. Zhang, Z.M. Ma, L.L. Pan, Z. Chen, H.W. Han, C.K. Han, X.J. Zhuang, Y. Lu, X.J. Li, S.Y. Yang, X.Y. Li, Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol. 59, 557–562 (2013)PubMedCrossRefGoogle Scholar
  102. 102.
    A. Viitasalo, M. Atalay, J. Pihlajamaki, J. Jaaskelainen, A. Korkmaz, D. Kaminska, V. Lindi, T.A. Lakka, The 148M allele of the PNPLA3 gene is associated with plasma irisin levels in a population sample of Caucasian children: the PANIC study. Metabolism 64, 793–796 (2015)PubMedCrossRefGoogle Scholar
  103. 103.
    G. Mintziori, S.A. Polyzos, Emerging and future therapies for nonalcoholic steatohepatitis in adults. Expert Opin. Pharmacother. 17, 1937–1946 (2016)PubMedCrossRefGoogle Scholar
  104. 104.
    M. Moreno, J.M. Moreno-Navarrete, M. Serrano, F. Ortega, E. Delgado, C. Sanchez-Ragnarsson, S. Valdés, P. Botas, W. Ricart, J.M. Fernández-Real, Circulating irisin levels are positively associated with metabolic risk factors in sedentary subjects. PLoS ONE 10, e0124100 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    K.H. Park, L. Zaichenko, M. Brinkoetter, B. Thakkar, A. Sahin-Efe, K.E. Joung, M.A. Tsoukas, E.V. Geladari, J.Y. Huh, F. Dincer, C.R. Davis, J.A. Crowell, C.S. Mantzoros, Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 98, 4899–4907 (2013)PubMedCrossRefGoogle Scholar
  106. 106.
    S. Tang, R. Zhang, F. Jiang, J. Wang, M. Chen, D. Peng, J. Yan, S. Wang, Y. Bao, C. Hu, W. Jia, Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population. Clin. Exp. Pharmacol. Physiol. (2015).
  107. 107.
    H.B. Jang, H.J. Kim, J.H. Kang, S.I. Park, K.H. Park, H.J. Lee, Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism 73, 100–108 (2017)PubMedCrossRefGoogle Scholar
  108. 108.
    G. Panagiotou, L. Mu, B. Na, K.J. Mukamal, C.S. Mantzoros, Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism 63, 1265–1271 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    S. Oelmann, M. Nauck, H. Völzke, M. Bahls, N. Friedrich, Circulating irisin concentrations are associated with a favourable lipid profile in the general population. PLoS ONE 11, e0154319 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    A.D. Anastasilakis, S.A. Polyzos, Z.G. Saridakis, G. Kynigopoulos, E.C. Skouvaklidou, D. Molyvas, M.F. Vasiloglou, A. Apostolou, T. Karagiozoglou-Lampoudi, A. Siopi, V. Mougios, P. Chatzistavridis, G. Panagiotou, A. Filippaios, S. Delaroudis, C.S. Mantzoros, Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet and body composition. J. Clin. Endocrinol. Metab. 99, 3247–3255 (2014)PubMedCrossRefGoogle Scholar
  111. 111.
    S. Mehrabian, E. Taheri, M. Karkhaneh, M. Qorbani, S. Hosseini, Association of circulating irisin levels with normal weight obesity, glycemic and lipid profile. J. Diabetes Metab. Disord. 15, 17 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    I. Gouni-Berthold, H.K. Berthold, J.Y. Huh, R. Berman, N. Spenrath, W. Krone, C.S. Mantzoros, Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS ONE 8, e72858 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    A.D. Anastasilakis, D. Koulaxis, N. Kefala, S.A. Polyzos, J. Upadhyay, E. Pagkalidou, F. Economou, C.D. Anastasilakis, C.S. Mantzoros, Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism 73, 1–8 (2017)PubMedCrossRefGoogle Scholar
  114. 114.
    T. Kuloglu, S. Aydin, M.N. Eren, M. Yilmaz, I. Sahin, M. Kalayci, E. Sarman, N. Kaya, O.F. Yilmaz, A. Turk, Y. Aydin, M.H. Yalcin, N. Uras, A. Gurel, S. Ilhan, E. Gul, S. Aydin, Irisin: a potentially candidate marker for myocardial infarction. Peptides 55, 85–91 (2014)PubMedCrossRefGoogle Scholar
  115. 115.
    S. Aydin, S. Aydin, M.A. Kobat, M. Kalayci, M.N. Eren, M. Yilmaz, T. Kuloglu, E. Gul, O. Secen, O.D. Alatas, A. Baydas, Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides 56, 141–145 (2014)PubMedCrossRefGoogle Scholar
  116. 116.
    W. Deng, Association of serum irisin concentrations with presence and severity of coronary artery disease. Med. Sci. Monit. 22, 4193–4197 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    N. Hou, F. Han, X. Sun, The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin. Endocrinol. 83, 339–343 (2015)CrossRefGoogle Scholar
  118. 118.
    C. Xie, Y. Zhang, T.D. Tran, H. Wang, S. Li, E.V. George, H. Zhuang, P. Zhang, A. Kandel, Y. Lai, D. Tang, W.H. Reeves, H. Cheng, Y. Ding, L.J. Yang, Irisin controls growth, intracellular Ca2+signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS ONE 10, e0136816 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    H. Wang, Y.T. Zhao, S. Zhang, P.M. Dubielecka, J. Du, N. Yano, Y.E. Chin, S. Zhuang, G. Qin, T.C. Zhao, Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. J. Cell Physiol. 232, 3775–3785 (2017)PubMedCrossRefGoogle Scholar
  120. 120.
    Y. Zhang, H. Song, Y. Zhang, F. Wu, Q. Mu, M. Jiang, F. Wang, W. Zhang, L. Li, L. Shao, S. Li, L. Yang, M. Zhang, Q. Wu, D. Tang, Irisin inhibits atherosclerosis by promoting endothelial proliferation through microrna126-5p. J. Am. Heart Assoc. 5, e004031 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Y. Zhang, Q. Mu, Z. Zhou, H. Song, Y. Zhang, F. Wu, M. Jiang, F. Wang, W. Zhang, L. Li, L. Shao, X. Wang, S. Li, L. Yang, Q. Wu, M. Zhang, D. Tang, Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS ONE 11, e0158038 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    H. Song, J. Xu, N. Lv, Y. Zhang, F. Wu, H. Li, L. Shao, Q. Mu, F. Wang, D. Tang, X. Fang, Irisin reverses platelet derived growth factor-BB-induced vascular smooth muscle cells phenotype modulation through STAT3 signaling pathway. Biochem. Biophys. Res. Commun. 479, 139–145 (2016)PubMedCrossRefGoogle Scholar
  123. 123.
    F. Han, S. Zhang, N. Hou, D. Wang, X. Sun, Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am. J. Physiol. Heart Circ. Physiol. 309, 1501–1508 (2015)CrossRefGoogle Scholar
  124. 124.
    J. Lu, G. Xiang, M. Liu, W. Mei, L. Xiang, J. Dong, Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis 243, 438–448 (2015)PubMedCrossRefGoogle Scholar
  125. 125.
    M. Jiang, F. Wan, F. Wang, W. Qi, Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem. Biophys. Res. Commun. 468, 823–836 (2015)Google Scholar
  126. 126.
    X. Liu, H. Mujahid, B. Rong, Q.H. Lu, W. Zhang, P. Li, N. Li, E.S. Liang, Q. Wang, D.Q. Tang, N.L. Li, X.P. Ji, Y.G. Chen, Y.X. Zhao, M.X. Zhang, Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J. Cell Mol. Med. (2017).
  127. 127.
    D.J. Li, Y.H. Li, H.B. Yuan, L.F. Qu, P. Wang, The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism 68, 31–42 (2017)PubMedCrossRefGoogle Scholar
  128. 128.
    J. Peng, X. Deng, W. Huang, J.H. Yu, J.X. Wang, J.P. Wang, S.B. Yang, X. Liu, L. Wang, Y. Zhang, X.Y. Zhou, H. Yang, Y.Z. He, F.Y. Xu, Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol. Immunol. 91, 185–194 (2017)PubMedCrossRefGoogle Scholar
  129. 129.
    S.A. Polyzos, D.G. Goulis, J. Kountouras, G. Mintziori, P. Chatzis, E. Papadakis, I. Katsikis, D. Panidis, Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: assessment of non-invasive indices predicting hepatic steatosis and fibrosis. Hormones 13, 519–531 (2014)PubMedGoogle Scholar
  130. 130.
    C.L. Chang, S.Y. Huang, Y.K. Soong, P.J. Cheng, C.J. Wang, I.T. Liang, Circulating irisin and glucose-dependent insulinotropic peptide are associated with the development of polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99, E2539–E2548 (2014)PubMedCrossRefGoogle Scholar
  131. 131.
    M. Li, M. Yang, X. Zhou, X. Fang, W. Hu, W. Zhu, C. Wang, D. Liu, S. Li, H. Liu, G. Yang, L. Li, Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 100, 1485–1493 (2015)PubMedCrossRefGoogle Scholar
  132. 132.
    M.S. Bostanci, N. Akdemir, B. Cinemre, A.S. Cevrioglu, S. Ozden, O. Unal, Serum irisin levels in patients with polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci. 19, 4462–4468 (2015)PubMedGoogle Scholar
  133. 133.
    A. Adamska, M. Karczewska-Kupczewska, A. Lebkowska, R. Milewski, M. Gorska, E. Otziomek, A. Nikolajuk, S. Wolczynski, I. Kowalska, Serum irisin and its regulation by hyperinsulinemia in women with polycystic ovary syndrome. Endocr. J. 63, 1107–1112 (2016)PubMedCrossRefGoogle Scholar
  134. 134.
    K. Pukajlo, L. Laczmanski, K. Kolackov, J. Kuliczkowska-Plaksej, M. Bolanowski, A. Milewicz, J. Daroszewski, Irisin plasma concentration in PCOS and healthy subjects is related to body fat content and android fat distribution. Gynecol. Endocrinol. 31, 907–911 (2015)PubMedCrossRefGoogle Scholar
  135. 135.
    S. Gao, Y. Cheng, L. Zhao, Y. Chen, Y. Liu, The relationships of irisin with bone mineral density and body composition in PCOS patients. Diabetes Metab. Res. Rev. 32, 421–428 (2016)PubMedCrossRefGoogle Scholar
  136. 136.
    R. Abali, I. Temel Yuksel, M.A. Yuksel, B. Bulut, M. Imamoglu, V. Emirdar, F. Unal, S. Guzel, C. Celik, Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. J. Obstet. Gynaecol. 36, 897–901 (2016)PubMedCrossRefGoogle Scholar
  137. 137.
    H. Li, X. Xu, X. Wang, X. Liao, L. Li, G. Yang, L. Gao, Free androgen index and Irisin in polycystic ovary syndrome. J. Endocrinol. Invest. 39, 549–556 (2016)PubMedCrossRefGoogle Scholar
  138. 138.
    C. Wang, X.Y. Zhang, Y. Sun, X.G. Hou, L. Chen, Higher circulating irisin levels in patients with polycystic ovary syndrome:a meta-analysis. Gynecol. Endocrinol. (2017).
  139. 139.
    G. Colaianni, C. Cuscito, T. Mongelli, P. Pignataro, C. Buccoliero, P. Liu, P. Lu, L. Sartini, M. Di Comite, G. Mori, A. Di Benedetto, G. Brunetti, T. Yuen, L. Sun, J.E. Reseland, S. Colucci, M.I. New, M. Zaidi, S. Cinti, M. Grano, The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA 112, 12157–12162 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    A.D.G. Baxter-Jones, S.A. Kontulainen, R.A. Faulkner, D.A. Bailey, A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone 43, 1101–1107 (2008)PubMedCrossRefGoogle Scholar
  141. 141.
    L. Giangregorio, R. El-Kotob, Exercise, muscle, and the applied load-bone strength balance. Osteoporos. Int. 28, 21–33 (2017)PubMedCrossRefGoogle Scholar
  142. 142.
    S. Epstein, A.M. Inzerillo, J. Caminis, M. Zaidi, Disorders associated with acute rapid and severe bone loss. J. Bone Mineral. Res. 18, 2083–2094 (2003)CrossRefGoogle Scholar
  143. 143.
    J.H. Keyak, A.K. Koyama, A. LeBlanc, Y. Lu, T.F. Lang, Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44, 449–453 (2009)PubMedCrossRefGoogle Scholar
  144. 144.
    B. Oppl, G. Michitsch, B. Misof, S. Kudlacek, J. Donis, K. Klaushofer, J. Zwerina, E. Zwettler, Low bone mineral density and fragility fractures in permanent vegetative state patients. J. Bone Mineral. Res. 29, 1096–1100 (2014)CrossRefGoogle Scholar
  145. 145.
    G. Colaianni, S. Cinti, S. Colucci, M. Grano, Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 1402, 5–9 (2017)PubMedCrossRefGoogle Scholar
  146. 146.
    G. Colaianni, C. Cuscito, T. Mongelli, A. Oranger, G. Mori, G. Brunetti, S. Colucci, S. Cinti, M. Grano, Irisin enhances osteoblast differentiation in vitro. Int. J. Endocrinol. 2014, 902186 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    X. Qiao, Y. Nie, Y. Ma, Y. Chen, R. Cheng, W. Yin, Y. Hu, W. Xu, L. Xu, Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep. 6, 18732 (2016)PubMedCrossRefGoogle Scholar
  148. 148.
    H. Kaji, Effects of myokines on bone. Bone Rep. 5, 826 (2016)Google Scholar
  149. 149.
    G. Colaianni, M. Grano, Role of Irisin on the bone-muscle functional unit. Bone Rep. 4, 765 (2015)Google Scholar
  150. 150.
    G. Colaianni, T. Mongelli, C. Cuscito, P. Pignataro, L. Lippo, G. Spiro, A. Notarnicola, I. Severi, G. Passeri, G. Mori, G. Brunetti, B. Moretti, U. Tarantino, S.C. Colucci, J.E. Reseland, R. Vettor, S. Cinti, M. Grano, Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci. Rep. 7, 2811 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    T. Klangjareonchai, H. Nimitphong, S. Saetung, N. Bhirommuang, R. Samittarucksa, S. Chanprasertyothin, R. Sudatip, B. Ongphiphadhanakul, Circulating sclerostin and irisin are related and interact with gender to influence adiposity in adults with prediabetes. Int. J. Endocrinol. 2014, 261545 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    V. Singhal, E.A. Lawson, K.E. Ackerman, P.K. Fazeli, H. Clarke, H. Lee, K. Eddy, D.A. Marengi, N.P. Derrico, M.L. Bouxsein, M. Misra, Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates. PLoS ONE 9, e100218 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    A.D. Anastasilakis, S.A. Polyzos, P. Makras, A. Gkiomisi, I. Bisbinas, A. Katsarou, A. Filippaios, C.S. Mantzoros, Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int. 25, 1633–1642 (2014)PubMedCrossRefGoogle Scholar
  154. 154.
    A. Palermo, R. Strollo, E. Maddaloni, D. Tuccinardi, L. D’Onofrio, S.I. Briganti, G. Defeudis, M.De Pascalis, M.C. Lazzaro, G. Colleluori, S. Manfrini, P. Pozzilli, N. Napoli, Irisin is associated with osteoporotic fractures independently of bone mineral density, body composition or daily physical activity. Clin. Endocrinol. 82, 615–619 (2015)CrossRefGoogle Scholar
  155. 155.
    J. Yan, H.J. Liu, W.C. Guo, J. Yang, Low serum concentrations of Irisin are associated with increased risk of hip fracture in Chinese older women. Joint Bone Spine (2017).
  156. 156.
    S.A. Polyzos, J. Kountouras, C.S. Mantzoros, Adipokines in nonalcoholic fatty liver disease. Metabolism 65, 1062–1079 (2016)PubMedCrossRefGoogle Scholar
  157. 157.
    M.A. Schumacher, N. Chinnam, T. Ohashi, R.S. Shah, H.P. Erickson, The structure of irisin reveals a novel intersubunit beta-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J. Biol. Chem. 288, 33738–33744 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    M. Gry, R. Rimini, S. Stromberg, A. Asplund, F. Ponten, M. Uhlen, P. Nilsson, Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genom. 10, 365 (2009)CrossRefGoogle Scholar
  159. 159.
    T. Maier, M. Guell, L. Serrano, Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973 (2009)PubMedCrossRefGoogle Scholar
  160. 160.
    M.P. Jedrychowski, C.D. Wrann, J.A. Paulo, K.K. Gerber, J. Szpyt, M.M. Robinson, K.S. Nair, S.P. Gygi, B.M. Spiegelman, Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Stergios A. Polyzos
    • 1
  • Athanasios D. Anastasilakis
    • 2
  • Zoe A. Efstathiadou
    • 3
  • Polyzois Makras
    • 4
  • Nikolaos Perakakis
    • 5
  • Jannis Kountouras
    • 6
  • Christos S. Mantzoros
    • 5
  1. 1.First Department of Pharmacology, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Endocrinology424 General Military HospitalThessalonikiGreece
  3. 3.Department of EndocrinologyIppokration General HospitalThessalonikiGreece
  4. 4.Department of Endocrinology and Diabetes251 Hellenic Air Force General HospitalAthensGreece
  5. 5.Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  6. 6.Second Medical Clinic, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations