Advertisement

Endocrine

, Volume 58, Issue 1, pp 3–13 | Cite as

Role of calcitonin gene-related peptide in energy metabolism

  • William Gustavo Lima
  • Gleuber Henrique Marques-Oliveira
  • Thaís Marques da Silva
  • Valéria Ernestânia Chaves
Review

Abstract

Purpose

Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by alternative tissue-specific splicing of the primary transcript of the CALC genes. CGRP is widely distributed in the central and peripheral nervous system, as well as in several organs and tissues. The presence of CGRP in the liver and brown and white adipose tissue suggests an effect of this neuropeptide on regulation of energy homeostasis.

Methods

In this review, we summarize the current knowledge of the effect of CGRP on the control of energy metabolism, primarily focusing on food intake, thermoregulation and lipid metabolism in adipose tissue, liver and muscle.

Results

CGRP induces anorexia, stimulating anorexigenic neuropeptide and/or inhibiting orexigenic neuropeptide expression, through cAMP/PKA pathway activation. CGRP also induces energy expenditure, increasing the skin temperature and brown adipose tissue thermogenesis. It has been also suggested that information related to peripheral lipid stores may be conveyed to the brain via CGRP-sensory innervation from adipose tissue. More recently, it was demonstrated that mice lacking αCGRP are protected from obesity induced by high-fat diet and that CGRP regulates the content of lipid in liver, muscle and adipose tissue.

Conclusions

It is unclear the receptor responsible by CGRP effects, as well as whether this neuropeptide acts directly or indirectly in liver, muscle and adipose tissue.

Keywords

Food intake Thermoregulation Lipid metabolism Obesity Hypothalamus TRPV1 

Abbreviations

ACC

Acetyl-CoA carboxylase

AM

Adrenomedullin

AMY

Amylin

AMPK

AMP-dependent protein kinase

BMI

Body mass index

CGRP

Calcitonin gene-related peptide

cAMP

3′,5′-Cyclic adenosine monophosphate

CLR

Calcitonin receptor-like receptor

CTR

calcitonin receptor

Cys

Cysteine

EC50

Half-maximal effect

FFA

Free fatty acid

H&E

haematoxylin and eosin

IBAT

Interscapular brown adipose tissue

RAMP

Receptor activity-modifying proteins

TAG

Triacylglycerol

TRPV1

transient receptor potential cation channel subfamily V member 1

UCP

Uncoupling protein

Notes

Acknowledgements

The authors would like to thank Renato Helios Migliorini (in memoriam) for being an exemplary scientist and professor.

Funding

This work was supported through funding from the Federal University of São João del-Rei. W.G.L. received a fellowship from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). T.M.S. received a fellowship from the Federal University of São João del-Rei.

Author contributions

All authors contributed to the development, analysis and drafting of this article.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

References

  1. 1.
    J.W. Hoppener, P.H. Steenbergh, J. Zandberg, A.H. Geurts van Kessel, S.B. Baylin, B.D. Nelkin et al., The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70, 259–263 (1985)PubMedCrossRefGoogle Scholar
  2. 2.
    P.H. Steenbergh, C.J.M. Lips, H.S. Jansz, A second human calcitonin / CGRP. FEBS Lett. 183, 2–6 (1985)CrossRefGoogle Scholar
  3. 3.
    M. Alevizaki, A. Shiraishi, F.V. Rassool, G.J. Ferrier, I. MacIntyre, S. Legon, The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 206, 47–52 (1986)PubMedCrossRefGoogle Scholar
  4. 4.
    P. Westermark, C. Wernstedt, E. Wilander, D.W. Hayden, T.D. O’Brien, K.H. Johnson, Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 84, 3881–3885 (1987)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    K. Kitamura, K. Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo et al., Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560 (1993). https://doi.org/10.1006/bbrc.1993.1451PubMedCrossRefGoogle Scholar
  6. 6.
    J. Roh, C.L. Chang, A. Bhalla, C. Klein, S.Y.T. Hsu, Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 279, 7264–7274 (2004). https://doi.org/10.1074/jbc.M305332200PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Takei, S. Hyodo, T. Katafuchi, N. Minamino, Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25, 1643–1656 (2004). https://doi.org/10.1016/j.peptides.2004.06.026PubMedCrossRefGoogle Scholar
  8. 8.
    H.A. Watkins, D.L. Rathbone, J. Barwell, D.L. Hay, D.R. Poyner, Structure-activity relationships for a-calcitonin gene-related peptide. Br. J. Pharmacol. 170, 1308–1322 (2013). https://doi.org/10.1111/bph.12072PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    H.R. Morris, M. Panico, T. Etienne, J. Tippins, S.I. Girgis, I. MacIntyre, Isolation and characterization of human calcitonin gene-related peptide. Nature 308, 746–748 (1984)PubMedCrossRefGoogle Scholar
  10. 10.
    J.W. Hoppener, P.H. Steenbergh, J. Zandberg, E. Bakker, P.L. Pearson, A.H. Geurts van Kessel et al., Localization of the polymorphic human calcitonin gene on chromosome 11. Hum. Genet. 66, 309–312 (1984)PubMedCrossRefGoogle Scholar
  11. 11.
    D. van Rossum, U.K. Hanisch, R. Quirion, Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev. 21, 649–678 (1997)PubMedCrossRefGoogle Scholar
  12. 12.
    K. Takami, Y. Kawai, S. Uchida, M. Tohyama, Y. Shiotani, H. Yoshida et al., Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60, 227–230 (1985)PubMedCrossRefGoogle Scholar
  13. 13.
    W.A. Macdonald, O.B. Nielsen, T. Clausen, Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, 1214–1223 (2008). https://doi.org/10.1152/ajpregu.00893.2007CrossRefGoogle Scholar
  14. 14.
    F.A. Vigliano, L. Munoz, D. Hernandez, P. Cerutti, R. Bermudez, M.I. Quiroga, An immunohistochemical study of the gut neuroendocrine system in juvenile pejerrey Odontesthes bonariensis (Valenciennes). J. Fish Biol. 78, 901–911 (2011). https://doi.org/10.1152/ajpregu.00893.2007PubMedCrossRefGoogle Scholar
  15. 15.
    B. Leighton, E.A. Foot, The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem. J. 307, 707–712 (1995)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    L. Kruger, P.W. Mantyh, C. Sternini, N.C. Brecha, C.R. Mantyh, Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res. 463, 223–244 (1988). https://doi.org/10.1016/0006-8993(88)90395-2PubMedCrossRefGoogle Scholar
  17. 17.
    M. Réthelyi, C.B. Metz, P.K. Lund, Distribution of neurons expressing calcitonin gene-related peptide mRNAS in the brain stem, spinal cord and dorsal root ganglia of rat and guinea-pig. Neuroscience 29, 225–239 (1989). https://doi.org/10.1016/0306-4522(89)90345-XPubMedCrossRefGoogle Scholar
  18. 18.
    C. Wada, C. Hashimoto, T. Kameya, K. Yamaguchi, M. Ono, Developmentally regulated expression of the calcitonin gene related peptide (CGRP) in rat lung endocrine cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 55, 217–223 (1988)PubMedGoogle Scholar
  19. 19.
    A. Sleijffers, M. Herreilers, H. van Loveren, J. Garssen, Ultraviolet B radiation induces upregulation of calcitonin gene-related peptide levels in human Finn chamber skin samples. J. Photochem. Photobiol. B Biol. 69, 149–152 (2003). https://doi.org/10.1016/S1011-1344(03)00002-2CrossRefGoogle Scholar
  20. 20.
    S. Bracq, B. Clement, E. Pidoux, M.S. Moukhtar, A. Jullienne, CGRP is expressed in primary cultures of human hepatocytes and in normal liver. FEBS Lett. 351, 63–66 (1994)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Matsui, T. Yamane, K. Kobayashi-Hattori, Y. Oishi, Ultraviolet B irradiation reduces the expression of adiponectin in ovarial adipose tissues through endocrine actions of calcitonin gene-related peptide-induced serum amyloid A. PLoS One 9, e98040 2014). https://doi.org/10.1371/journal.pone.0098040PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    P. Linscheid, D. Seboek, H. Zulewski, U. Keller, B. Müller, Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology 146, 2699–2708 (2005). https://doi.org/10.1210/en.2004-1424PubMedCrossRefGoogle Scholar
  23. 23.
    K. Timper, J. Grisouard, T. Radimerski, K. Dembinski, R. Peterli, A. Häring et al., Glucose-dependent insulinotropic polypeptide (GIP) induces calcitonin gene-related peptide (CGRP)-I and procalcitonin (Pro-CT) production in human adipocytes. J. Clin. Endocrinol. Metab. 96, 297–303 (2011). https://doi.org/10.1210/jc.2010-1324CrossRefGoogle Scholar
  24. 24.
    O. Pivovarova, Ö. Gögebakan, M.A. Osterhoff, M. Nauck, A.F.H. Pfeiffer, N. Rudovich, In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue. Regul. Pept. 179, 29–32 (2012). https://doi.org/10.1016/j.regpep.2012.08.004PubMedCrossRefGoogle Scholar
  25. 25.
    F. Bendtsen, S. Schifter, J.H. Henriksen, Increased circulating calcitonin gene-related peptide (CGRP) in cirrhosis. J. Hepatol. 12, 118–123 (1991)PubMedCrossRefGoogle Scholar
  26. 26.
    S.P. Alexander, A.P. Davenport, E. Kelly, N. Marrion, J.A. Peters, H.E. Benson et al., The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 172, 5744–5869 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    D.R. Poyner, P.M. Sexton, I. Marshall, D.M. Smith, R. Quirion, W. Born et al., International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 54, 233–246 (2002). https://doi.org/10.1124/pr.54.2.233PubMedCrossRefGoogle Scholar
  28. 28.
    D.L. Hay, C.S. Walker, CGRP and its receptors. Headache 57, 625–636 (2017). https://doi.org/10.1111/head.13064PubMedCrossRefGoogle Scholar
  29. 29.
    C. Juaneda, Y. Dumont, R. Quirion, The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol. Sci. 21, 432–438 (2000). https://doi.org/10.1016/S0165-6147(00)01555-8PubMedCrossRefGoogle Scholar
  30. 30.
    D. Van Rossum, D.P. Menard, A. Fournier, S. St-Pierre, R. Quirion, Binding profile of a selective calcitonin gene-related peptide (CGRP) receptor antagonist ligand, [125I-Tyr]hCGRP8-37, in rat brain and peripheral tissues. J. Pharmacol. Exp. Ther. 269, 846–853 (1994)PubMedGoogle Scholar
  31. 31.
    J.P. McGillis, S. Humphreys, V. Rangnekar, J. Ciallella, Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell Immunol. 150, 391–404 (1993)PubMedCrossRefGoogle Scholar
  32. 32.
    T. Dennis, A. Fournier, A. Cadieux, F. Pomerleau, F.B. Jolicoeur, S. St Pierre et al., hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254, 123–128 (1990)PubMedGoogle Scholar
  33. 33.
    H. Yoshizaki, M. Takamiya, T. Okada, Characterization of picomolar affinity binding sites for [125I]-human calcitonin gene-related peptide in rat brain and heart. Biochem. Biophys. Res. Commun. 146, 443–451 (1987)PubMedCrossRefGoogle Scholar
  34. 34.
    S. Inagaki, S. Kito, Y. Kubota, S. Girgis, C.J. Hillyard, I. MacIntyre, Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brains. Brain Res. 374, 287–298 (1986)PubMedCrossRefGoogle Scholar
  35. 35.
    H. Nakamuta, Y. Fukuda, M. Koida, N. Fujii, A. Otaka, S. Funakoshi et al., Binding sites of calcitonin gene-related peptide (CGRP): abundant occurrence in visceral organs. Jpn. J. Pharmacol. 42, 175–180 (1986)PubMedCrossRefGoogle Scholar
  36. 36.
    J.C. Mak, P.J. Barnes, Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides 9, 957–963 (1988)PubMedCrossRefGoogle Scholar
  37. 37.
    C.G. Jennings, A.W. Mudge, Chick myotubes in culture express high-affinity receptors for calcitonin gene-related peptide. Brain Res. 504, 199–205 (1989)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Roa, J.P. Changeux, Characterization and developmental evolution of a high-affinity binding site for calcitonin gene-related peptide on chick skeletal muscle membrane. Neuroscience 41, 563–570 (1991). https://doi.org/10.1016/0306-4522(91)90349-SPubMedCrossRefGoogle Scholar
  39. 39.
    C.S. Walker, D.L. Hay, S.M. Fitzpatrick, G.J.S. Cooper, K.M. Loomes, alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides 58, 14–19 (2014). https://doi.org/10.1016/j.peptides.2014.05.011PubMedCrossRefGoogle Scholar
  40. 40.
    S. Uchida, H. Yamamoto, S. Iio, N. Matsumoto, X.B. Wang, N. Yonehara et al., Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54, 1000–1003 (1990)PubMedCrossRefGoogle Scholar
  41. 41.
    C. Gennari, J.A. Fischer, Cardiovascular action of calcitonin gene-related peptide in humans. Calcif. Tissue Int. 37, 581–584 (1985)PubMedCrossRefGoogle Scholar
  42. 42.
    T. Kezeli, T. Rukhadze, N. Gongadze, G. Sukoyan, N. Dolidze, M. Chipashvili et al., Effect of calcitonin gene-related peptide antagonist on the cardiovascular events, mortality, and prostaglandin E2 production by nitrate-induced tolerant rats with acute myocardial infarction. EPMA J. 7, 6 2016). https://doi.org/10.1186/s13167-016-0055-5PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    A.M. Salmon, M.I. Damaj, L.M. Marubio, M.P. Epping-Jordan, E. Merlo-Pich, J.P. Changeux, Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in alpha CGRP-deficient mice. Nat. Neurosci. 4, 357–358 (2001). https://doi.org/10.1038/86001PubMedCrossRefGoogle Scholar
  44. 44.
    M.D. Harzenetter, A.R. Novotny, P. Gais, C.A. Molina, F. Altmayr, B. Holzmann, Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. 179, 607–615 (2007). https://doi.org/10.4049/jimmunol.179.1.607PubMedCrossRefGoogle Scholar
  45. 45.
    S.D. Brain, T.J. Williams, J.R. Tippins, H.R. Morris, I. MacIntyre, Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985)PubMedCrossRefGoogle Scholar
  46. 46.
    R. Uddman, L. Edvinsson, E. Ekblad, R. Hakanson, F. Sundler, Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15, 1–23 (1986)PubMedCrossRefGoogle Scholar
  47. 47.
    S.D. Brain, Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. 84, 903–934 (2004). https://doi.org/10.1152/physrev.00037.2003PubMedCrossRefGoogle Scholar
  48. 48.
    L.A. Fisher, D.O. Kikkawa, J.E. Rivier, S.G. Amara, R.M. Evans, M.G. Rosenfeld et al., Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature 305, 534–536 (1983)PubMedCrossRefGoogle Scholar
  49. 49.
    Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita et al., Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ. Res. 89, 983–990 (2001). https://doi.org/10.1161/hh2301.100812PubMedCrossRefGoogle Scholar
  50. 50.
    T. Schinke, S. Liese, M. Priemel, M. Haberland, A.F. Schilling, P. Catala-Lehnen et al., Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J. Bone Miner. Res. 19, 2049–2056 (2004). https://doi.org/10.1359/JBMR.040915PubMedCrossRefGoogle Scholar
  51. 51.
    N. Takahashi, Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta et al., Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep. 6, 29294 2016). https://doi.org/10.1038/srep29294PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    T. Osaka, A. Kobayashi, Y. Namba, O. Ezaki, S. Inoue, S. Kimura et al., Temperature- and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch. Eur. J. Physiol. 437, 36–42 (1998). https://doi.org/10.1007/s004240050743CrossRefGoogle Scholar
  53. 53.
    T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Evidence for a physiological role of central calcitonin gene-related peptide (CGRP) receptors in the control of food intake in rats. Neurosci. Lett. 230, 159–162 (1997)PubMedCrossRefGoogle Scholar
  54. 54.
    B. Leighton, G.J. Cooper, Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335, 632–635 (1988). https://doi.org/10.1038/335632a0PubMedCrossRefGoogle Scholar
  55. 55.
    D.X. Gram, A.J. Hansen, M. Wilken, T. Elm, O. Svendsen, R.D. Carr et al., Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur. J. Endocrinol. 153, 963–969 (2005). https://doi.org/10.1530/eje.1.02046PubMedCrossRefGoogle Scholar
  56. 56.
    P.M. Zelissen, H.P. Koppeschaar, C.J. Lips, W.H. Hackeng, Calcitonin gene-related peptide in human obesity. Peptides. 12, 861–863 (1991)PubMedCrossRefGoogle Scholar
  57. 57.
    T. Liu, A. Kamiyoshi, T. Sakurai, Y. Ichikawa-Shindo, H. Kawate, L. Yang, et al., Endogenous calcitonin gene-related peptide regulates lipid metabolism and energy homeostasis in male mice. Endocrinology (in press, 2017). https://doi.org/10.1210/en.2016-1510Google Scholar
  58. 58.
    C.S. Walker, X. Li, L. Whiting, S. Glyn-Jones, S. Zhang, A.J. Hickey et al., Mice lacking the neuropeptide alpha-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology 151, 4257–4269 (2010). https://doi.org/10.1210/en.2010-0284PubMedCrossRefGoogle Scholar
  59. 59.
    D.D. Krahn, B.A. Gosnell, A.S. Levine, J.E. Morley, Effects of calcitonin gene-related peptide on food intake. Peptides 5, 861–864 (1984)PubMedCrossRefGoogle Scholar
  60. 60.
    T.A. Lutz, R. Rossi, J. Althaus, E. Del Prete, E. Scharrer, Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats. Peptides 19, 1533–1540 (1998). https://doi.org/10.1016/S0196-9781(98)00114-4PubMedCrossRefGoogle Scholar
  61. 61.
    W.S. Dhillo, C.J. Small, P.H. Jethwa, S.H. Russell, J.V. Gardiner, G.A. Bewick et al., Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology 144, 1420–1425 (2003). https://doi.org/10.1210/en.2002-220902PubMedCrossRefGoogle Scholar
  62. 62.
    J.E. Morley, S.A. Farr, J.F. Flood, Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17, 511–516 (1996). https://doi.org/10.1016/0196-9781(96)00015-0PubMedCrossRefGoogle Scholar
  63. 63.
    J.Y. Sun, M.Y. Jing, J.F. Wang, X.Y. Weng, The approach to the mechanism of calcitonin gene-related peptide-inducing inhibition of food intake. J. Anim. Physiol. Anim. Nutr. (Berl). 94, 552–560 (2010). https://doi.org/10.1111/j.1439-0396.2009.00937.xPubMedCrossRefGoogle Scholar
  64. 64.
    C. Nilsson, T.K. Hansen, C. Rosenquist, B. Hartmann, J.T. Kodra, J.F. Lau et al., Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur. J. Pharmacol. 773, 24–31 (2016). https://doi.org/10.1016/j.ejphar.2016.01.003PubMedCrossRefGoogle Scholar
  65. 65.
    T.A. Lutz, M. Senn, J. Althaus, E.D.E.L. Prete, F. Ehrensperger, E. Scharrer, Lesion of the Area Postrema / Nucleus of the Solitary Tract (AP / NTS) Attenuates the Anorectic Effects of Amylin and Calcitonin Gene-Related Peptide (CGRP) in Rats. Peptides 19, 309–317 (1998)PubMedCrossRefGoogle Scholar
  66. 66.
    M.E. Carter, M.E. Soden, L.S. Zweifel, R.D. Palmiter, Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013). https://doi.org/10.1038/nature12596PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    C.A. Campos, A.J. Bowen, S. Han, B.E. Wisse, R.D. Palmiter, M.W. Schwartz, Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017). https://doi.org/10.1038/nn.4574PubMedCrossRefGoogle Scholar
  68. 68.
    G. Missig, C.W. Roman, M.A. Vizzard, K.M. Braas, S.E. Hammack, V. May, Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86, 38–48 (2014). https://doi.org/10.1016/j.neuropharm.2014.06.022PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    A.C. Spetz, B. Pettersson, E. Varenhorst, E. Theodorsson, L.H. Thorell, M. Hammar, Momentary increase in plasma calcitonin gene-related peptide is involved in hot flashes in men treated with castration for carcinoma of the prostate. J. Urol. 166, 1720–1723 (2001)PubMedCrossRefGoogle Scholar
  70. 70.
    J.T. Chen, Y. Hirai, Y. Seimiya, K. Hasumi, M. Shiraki, Menopausal flushes and calcitonin-gene-related peptide. Lancet 342, 49 (1993)PubMedCrossRefGoogle Scholar
  71. 71.
    A. Valentini, F. Petraglia, D. De Vita, C. Nappi, A. Margutti, E.C. degli Uberti et al., Changes of plasma calcitonin gene-related peptide levels in postmenopausal women. Am. J. Obstet. Gynecol. 175, 638–642 (1996)PubMedCrossRefGoogle Scholar
  72. 72.
    Y.A. Wyon, A.C. Spetz, G.E. Theodorsson, M.L. Hammar, Concentrations of calcitonin gene-related peptide and neuropeptide Y in plasma increase during flushes in postmenopausal women. Menopause 7, 25–30 (2000)PubMedCrossRefGoogle Scholar
  73. 73.
    T. Kobayashi, O. Ushijima, J.T. Chen, M. Shiraki, T. Ohta, M. Kiyoki, Basal tail skin temperature elevation and augmented response to calcitonin gene-related peptide in ovariectomized rats. J. Endocrinol. 146, 431–437 (1995). https://doi.org/10.1677/joe.0.1460431PubMedCrossRefGoogle Scholar
  74. 74.
    M. Yuzurihara, Y. Ikarashi, M. Noguchi, Y. Kase, S. Takeda, M. Aburada, Involvement of calcitonin gene-related peptide in elevation of skin temperature in castrated male rats. Urology 62, 947–951 (2003). https://doi.org/10.1016/S0090-4295(03)00587-9PubMedCrossRefGoogle Scholar
  75. 75.
    A.E. Herbison, Sexually dimorphic expression of androgen receptor immunoreactivity by somatostatin neurones in rat hypothalamic periventricular nucleus and bed nucleus of the stria terminalis. J. Neuroendocrinol. 7, 543–553 (1995)PubMedCrossRefGoogle Scholar
  76. 76.
    D.C. Braasch, E.M. Deegan, E.R. Grimm, J.D. Griffin, Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons. BMC Neurosci. 9, 64 2008). https://doi.org/10.1186/1471-2202-9-64PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res. 827, 176–184 (1999). https://doi.org/10.1016/S0006-8993(99)01333-5PubMedCrossRefGoogle Scholar
  78. 78.
    J.D. Lever, S. Mukherjee, D. Norman, D. Symons, R.T. Jung, Neuropeptide and noradrenaline distributions in rat interscapular brown fat and in its intact and obstructed nerves of supply. J. Auton. Nerv. Syst. 25, 15–25 (1988)PubMedCrossRefGoogle Scholar
  79. 79.
    R. De Matteis, D. Ricquier, S. Cinti, TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 27, 877–886 (1998)PubMedCrossRefGoogle Scholar
  80. 80.
    C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012). https://doi.org/10.1152/ajpregu.00640.2011PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    J. Cui, G. Zaror-Behrens, J. Himms-Hagen, Capsaicin desensitization induces atrophy of brown adipose tissue in rats. Am. J. Physiol. 259, R324–R332 (1990)PubMedGoogle Scholar
  82. 82.
    J. Cui, J. Himms-Hagen, Rapid but transient atrophy of brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262, R562–R567 (1992)PubMedGoogle Scholar
  83. 83.
    J. Himms-Hagen, J. Cui, S.L. Sigurdson, Sympathetic and sensory nerves in control of growth of brown adipose tissue: Effects of denervation and of capsaicin. Neurochem Int. 17, 271–279 (1990)Google Scholar
  84. 84.
    A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, Involvement of sympathetic activation and brown adipose tissue in calcitonin gene-related peptide-induced heat production in the rat. Brain Res. 849, 196–202 (1999)PubMedCrossRefGoogle Scholar
  85. 85.
    T. Hasegawa, K. Yokotani, Y. Okuma, M. Manabe, M. Hirakawa, Y. Osumi, Microinjection of alpha-calcitonin gene-related peptide into the hypothalamus activates sympathetic outflow in rats. Jpn. J. Pharmacol. 61, 325–332 (1993)PubMedCrossRefGoogle Scholar
  86. 86.
    Z. Zhang, X. Liu, D.A. Morgan, A. Kuburas, D.R. Thedens, A.F. Russo et al., Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 60, 1063–1071 (2011). https://doi.org/10.2337/db10-0692PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    A.L. Motter, G.P. Ahern, TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257–2262 (2008). https://doi.org/10.1016/j.febslet.2008.05.021PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    M. Nakanishi, K. Hata, T. Nagayama, T. Sakurai, T. Nishisho, H. Wakabayashi et al., Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Mol. Biol. Cell 21, 2568–2577 (2010). https://doi.org/10.1091/mbc.E10-01-0049PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    V.S. Mackintosh, C.T. Phan, B.C. Mortimer, T.G. Redgrave, Vasoactive mediators affect the clearance of lipids from emulsion models of plasma lipoproteins in rats. J. Cardiovasc. Pharmacol. 27, 447–454 (1996). https://doi.org/10.1097/00005344-199603000-00019PubMedCrossRefGoogle Scholar
  90. 90.
    M.C. Moore, D.W. Lin, C.A. Colburn, R.E. Goldstein, D.W. Neal, A.D. Cherrington, Insulin- and glucagon-independent effects of calcitonin gene-related peptide in the conscious dog. Metabolism 48, 603–610 (1999)PubMedCrossRefGoogle Scholar
  91. 91.
    R.N. Danaher, K.M. Loomes, B.L. Leonard, L. Whiting, D.L. Hay, L.Y. Xu et al., Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 149, 154–160 (2008). https://doi.org/10.1210/en.2007-0583PubMedCrossRefGoogle Scholar
  92. 92.
    D. Carling, AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017). https://doi.org/10.1016/j.ceb.2017.01.005PubMedCrossRefGoogle Scholar
  93. 93.
    B. Fontaine, A. Klarsfeld, T. Hökfelt, J.P. Changeux, Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71, 59–65 (1986). https://doi.org/10.1016/0304-3940(86)90257-0PubMedCrossRefGoogle Scholar
  94. 94.
    M. Buffelli, E. Pasino, A. Cangiano, In vivo acetylcholine receptor expression induced by calcitonin gene-related peptide in rat soleus muscle. Neuroscience 104, 561–567 (2001)PubMedCrossRefGoogle Scholar
  95. 95.
    C.A. Hodges-Savola, H.L. Fernandez, A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase. Neurosci. Lett. 190, 117–120 (1995)PubMedCrossRefGoogle Scholar
  96. 96.
    H.V. New, A.W. Mudge, Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323, 809–811 (1986). https://doi.org/10.1038/323809a0PubMedCrossRefGoogle Scholar
  97. 97.
    K. Miles, P. Greengard, R.L. Huganir, Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2, 1517–1524 (1989)PubMedCrossRefGoogle Scholar
  98. 98.
    K. Chatzipanteli, R.B. Goldbergt, G.A. Howard, B.A. Roos, Calcitonin gene-related peptide is an adipose-tissue neuropeptide with lipolytic actions. Endocrinol. Metabol. 3, 235–242 (1996)Google Scholar
  99. 99.
    H. Shi, C.K. Song, A. Giordano, S. Cinti, T.J. Bartness. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regul Integr Comp Physiol. 288, R1028–37 (2005)Google Scholar
  100. 100.
    H. Shi, T.J. Bartness, White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R514–R520 (2005). https://doi.org/10.1152/ajpregu.00036.2005PubMedCrossRefGoogle Scholar
  101. 101.
    C.S. Walker, S. Eftekhari, R.L. Bower, A. Wilderman, P.A. Insel, L. Edvinsson et al., A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl. Neurol. 2, 595–608 (2015). https://doi.org/10.1002/acn3.197PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    G. Christopoulos, K.J. Perry, M. Morfis, N. Tilakaratne, Y. Gao, N.J. Fraser et al., Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999)PubMedGoogle Scholar
  103. 103.
    R.D. Reidelberger, A.C. Haver, U. Arnelo, D.D. Smith, C.S. Schaffert, J. Permert, Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R568–R574 (2004). https://doi.org/10.1152/ajpregu.00213.2004PubMedCrossRefGoogle Scholar
  104. 104.
    T.A. Lutz, Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69, 1947–1965 (2012). https://doi.org/10.1007/s00018-011-0905-1PubMedCrossRefGoogle Scholar
  105. 105.
    Y. Dong, A. Betancourt, M. Belfort, C. Yallampalli, Targeting adrenomedullin to improve lipid homeostasis in diabetic pregnancies. J. Clin. Endocrinol. Metab. (2017). https://doi.org/10.1210/jc.2017-00920Google Scholar
  106. 106.
    T. Kuo, Y. Ouchi, S. Kim, K. Toba, H. Orimo, The role of activation of the sympathetic nervous system in the central pressor action of calcitonin gene-related peptide in conscious rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 349, 394–400 (1994)PubMedCrossRefGoogle Scholar
  107. 107.
    V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011). https://doi.org/10.1016/j.biochi.2011.05.018PubMedCrossRefGoogle Scholar
  108. 108.
    A.E. Boyd 3rd, S.R. Giamber, M. Mager, H.E. Lebovitz, Lactate inhibition of lipolysis in exercising man. Metabolism 23, 531–542 (1974)PubMedCrossRefGoogle Scholar
  109. 109.
    C. Liu, J. Wu, J. Zhu, C. Kuei, J. Yu, J. Shelton et al., Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009). https://doi.org/10.1074/jbc.M806409200PubMedCrossRefGoogle Scholar
  110. 110.
    K. Rooney, P. Trayhurn, Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 106, 1310–1316 (2011). https://doi.org/10.1017/S0007114511004673PubMedCrossRefGoogle Scholar
  111. 111.
    A. Bouloumie, V. Planat, J.C. Devedjian, P. Valet, J.S. Saulnier-Blache, M. Record et al., Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases. J. Biol. Chem. 269, 30254–30259 (1994)PubMedGoogle Scholar
  112. 112.
    P. Valet, C. Pages, O. Jeanneton, D. Daviaud, P. Barbe, M. Record et al., Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J. Clin. Invest. 101, 1431–1438 (1998). https://doi.org/10.1172/JCI806PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    M.T. Foster, T.J. Bartness, Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1630–R1637 (2006). https://doi.org/10.1152/ajpregu.00197.2006PubMedCrossRefGoogle Scholar
  114. 114.
    I.H.A. Heinonen, R. Boushel, K.K. Kalliokoski, The circulatory and metabolic responses to hypoxia in humans - with special reference to adipose tissue physiology and obesity. Front. Endocrinol. (Lausanne) 7, 116 (2016) https://doi.org/10.3389/fendo.2016.00116.Google Scholar
  115. 115.
    N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa et al., Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007). https://doi.org/10.2337/db06-0911PubMedCrossRefGoogle Scholar
  116. 116.
    W.G. Lima, M.E.S. Martins-Santos, V.E. Chaves, Uric acid as a modulator of glucose and lipid metabolism. Biochimie 116, 17–23 (2015). https://doi.org/10.1016/j.biochi.2015.06.025PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of PhysiologyFederal University of São João del-ReiDivinópolisBrazil

Personalised recommendations