, Volume 56, Issue 3, pp 528–537 | Cite as

STEAP4 expression in human islets is associated with differences in body mass index, sex, HbA1c, and inflammation

  • Hannah M. Gordon
  • Neil Majithia
  • Patrick E. MacDonald
  • Jocelyn E. Manning Fox
  • Poonam R. Sharma
  • Frances L. Byrne
  • Kyle L. Hoehn
  • Carmella Evans-Molina
  • Linda Langman
  • Kenneth L. Brayman
  • Craig S. Nunemaker
Original Article



STEAP4 (six-transmembrane epithelial antigen of the prostate 4) is a metalloreductase that has been shown previously to protect cells from inflammatory damage. Genetic variants in STEAP4 have been associated with numerous metabolic disorders related to obesity, including putative defects in the acute insulin response to glucose in type 2 diabetes.


We examined whether obesity and/or type 2 diabetes altered STEAP4 expression in human pancreatic islets.


Human islets were isolated from deceased donors at two medical centers and processed for quantitative polymerase chain reaction. Organ donors were selected by status as non-diabetic or having type 2 diabetes. Site 1 (Edmonton): N = 13 type 2 diabetes donors (7M, 6F), N = 20 non-diabetic donors (7M, 13F). Site 2 (Virginia): N = 6 type 2 diabetes donors (6F), N = 6 non-diabetic donors (3M, 3F).


STEAP4 showed reduced islet expression with increasing body mass index among all donors (P < 0.10) and non-diabetic donors (P < 0.05) from Site 1; STEAP4 showed reduced islet expression among type 2 diabetes donors with increasing hemoglobin A1c. Islet STEAP4 expression was also marginally higher in female donors (P < 0.10). Among type 2 diabetes donors from Site 2, islet insulin expression was reduced, STEAP4 expression was increased, and white blood cell counts were increased compared to non-diabetic donors. Islets from non-diabetic donors that were exposed overnight to 5 ng/ml IL-1β displayed increased STEAP4 expression, consistent with STEAP4 upregulation by inflammatory signaling.


These findings suggest that increased STEAP4 mRNA expression is associated with inflammatory stimuli, whereas lower STEAP4 expression is associated with obesity in human islets. Given its putative protective role, downregulation of STEAP4 by chronic obesity suggests a mechanism for reduced islet protection against cellular damage.


Inflammation Islets Obesity Type 2 diabetes Cytokines Iron 



Support for this work was provided by R01 DK089182 and the Ohio University Diabetes Institute to CSN; PEM holds a 2016/2017 Killam Professorship; funding for CEM from VA Grant 5I01BX001733 and R01 DK093954. We thank the Human Organ Procurement and Exchange (HOPE) program (Edmonton, Canada) and the Trillium Gift of Life Network (TGLN; Toronto, Canada) for assistance with procurement of donor pancreas for research. We thank Mr. James Lyon for human islet isolations performed at the Alberta Diabetes Institute IsletCore, supported by funding from the Alberta Diabetes Foundation, and Drs. Tatsuya Kin and James Shapiro for human islet isolations performed at the University of Alberta Clinical Islet Laboratory. We thank Dr. Tatsuyoshi Kono at Indiana University School of Medicine for technical assistance. We also thank The University of Virginia Department of Surgery and Human Islet Isolation GMP Facility. NIH DK089182 to CSN and Alberta Diabetes Foundation to PEM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All studies were approved by the Human Research Ethics Board at the University of Alberta (Pro00001754, Pro00013094) for donors from Site 1 and by University of Virginia Institutional Review Board approved protocol #14904 for donors from Site 2.

Informed consent

Informed consent of the donor and their family, including for use of organs for research, was obtained by the local organ procurement agency prior to organ retrieval.

Supplementary material

12020_2017_1297_MOESM1_ESM.docx (26 kb)
Supplementary Information


  1. 1.
    J.A. Ehses, A. Perren, E. Eppler, P. Ribaux, J.A. Pospisilik, R. Maor-Cahn, X. Gueripel, H. Ellingsgaard, M.K. Schneider, G. Biollaz, A. Fontana, M. Reinecke, F. Homo-Delarche, M.Y. Donath, Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007)CrossRefPubMedGoogle Scholar
  2. 2.
    F. Homo-Delarche, S. Calderari, J.C. Irminger, M.N. Gangnerau, J. Coulaud, K. Rickenbach, M. Dolz, P. Halban, B. Portha, P. Serradas, Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55, 1625–1633 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    K. Eguchi, I. Manabe, Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes. Metab. 15(Suppl 3), 152–158 (2013)CrossRefPubMedGoogle Scholar
  4. 4.
    M.J. Butcher, D. Hallinger, E. Garcia, Y. Machida, S. Chakrabarti, J. Nadler, E.V. Galkina, Y. Imai, Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57, 491–501 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    X. Wang, W. Bao, J. Liu, Y.-Y. Ouyang, D. Wang, S. Rong, X. Xiao, Z.-L. Shan, Y. Zhang, P. Yao, L.-G. Liu, Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 36, 166–175 (2013). doi: 10.2337/dc12-0702 CrossRefPubMedGoogle Scholar
  6. 6.
    C.G. Korkmaz, K.S. Korkmaz, P. Kurys, C. Elbi, L. Wang, T.I. Klokk, C. Hammarstrom, G. Troen, A. Svindland, G.L. Hager, F. Saatcioglu, Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 24, 4934–4945 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Moldes, F. Lasnier, X. Gauthereau, C. Klein, J. Pairault, B. Feve, A.M. Chambaut-Guerin, Tumor necrosis factor-alpha-induced adipose-related protein (TIARP), a cell-surface protein that is highly induced by tumor necrosis factor-alpha and adipose conversion. J. Biol. Chem. 276, 33938–33946 (2001)CrossRefPubMedGoogle Scholar
  8. 8.
    X. Chen, C. Zhu, C. Ji, Y. Zhao, C. Zhang, F. Chen, C. Gao, J. Zhu, L. Qian, X. Guo, STEAP4, a gene associated with insulin sensitivity, is regulated by several adipokines in human adipocytes. Int. J. Mol. Med. 25, 361–367 (2010)PubMedGoogle Scholar
  9. 9.
    X. Chen, Z. Huang, B. Zhou, H. Wang, G. Jia, G. Liu, H. Zhao, STEAP4 and insulin resistance. Endocrine 47, 372–379 (2014). doi: 10.1007/s12020-014-0230-1 CrossRefPubMedGoogle Scholar
  10. 10.
    L. Nanfang, G. Yanying, W. Hongmei, Y. Zhitao, Z. Juhong, Z. Ling, L. Wenli, Variations of six transmembrane epithelial antigen of prostate 4 (STEAP4) gene are associated with metabolic syndrome in a female Uygur general population. Arch. Med. Res. 41, 449–456 (2010)CrossRefPubMedGoogle Scholar
  11. 11.
    Y. Qi, Y. Yu, Y. Wu, S. Wang, Q. Yu, J. Shi, Z. Xu, Q. Zhang, Y. Fu, Y. Fu, C. Kou, Genetic variants in six-transmembrane epithelial antigen of prostate 4 increase risk of developing metabolic syndrome in a Han Chinese population. Genet. Test. Mol. Biomark. 19, 666–672 (2015). doi: 10.1089/gtmb.2015.0104 CrossRefGoogle Scholar
  12. 12.
    A. Miot, S. Maimaitiming, N. Emery, N. Bellili, R. Roussel, J. Tichet, G. Velho, B. Balkau, M. Marre, F. Fumeron, D.S. Group, Genetic variability at the six transmembrane protein of prostate 2 locus and the metabolic syndrome: the data from an epidemiological study on the insulin resistance syndrome (DESIR) study. J. Clin. Endocrinol. Metab. 95, 2942–2947 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    P.R. Sharma, A.J. Mackey, E.A. Dejene, J.W. Ramadan, C.D. Langefeld, N.D. Palmer, K.D. Taylor, L.E. Wagenknecht, R.M. Watanabe, S.S. Rich, C.S. Nunemaker, An islet-targeted genome-wide association scan identifies novel genes implicated in cytokine-mediated islet STRESS in type 2 diabetes. Endocrinology 156, 3147–3156 (2015). doi: 10.1210/en.2015-1203 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    R.S. Ohgami, D.R. Campagna, A. McDonald, M.D. Fleming, The steap proteins are metalloreductases. Blood 108, 1388–1394 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    L. Han, M.X. Tang, Y. Ti, Z.H. Wang, J. Wang, W.Y. Ding, H. Wang, Y. Zhang, W. Zhang, M. Zhong, Overexpressing STAMP2 improves insulin resistance in diabetic ApoE(-/-)/LDLR(-/-) mice via macrophage polarization shift in adipose tissues. PLoS One 8, e78903 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    C.-T. Chuang, J.-Y. Guh, C.-Y. Lu, Y.-T. Wang, H.-C. Chen, L.-Y. Chuang, Steap4 attenuates high glucose and S100B-induced effects in mesangial cells. J. Cell. Mol. Med. 19, 1234–1244 (2015). doi: 10.1111/jcmm.12472 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    S.B. Wang, T. Lei, L.L. Zhou, H.L. Zheng, C.P. Zeng, N. Liu, Z.Q. Yang, X.D. Chen, Functional analysis and transcriptional regulation of porcine six transmembrane epithelial antigen of prostate 4 (STEAP4) gene and its novel variant in hepatocytes. Int. J. Biochem. Cell Biol. 45, 612–620 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    H.Y. Kim, H.K. Cho, S.K. Yoo, J.H. Cheong, Hepatic STAMP2 decreases hepatitis B virus X protein-associated metabolic deregulation. Exp. Mol. Med. 44, 622–632 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    H.Y. Kim, S.Y. Park, M.H. Lee, J.H. Rho, Y.J. Oh, H.U. Jung, S.H. Yoo, N.Y. Jeong, H.J. Lee, S. Suh, S.Y. Seo, J. Cheong, J.S. Jeong, Y.H. Yoo, Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. J. Hepatol. 63, 477–485 (2015). doi: 10.1016/j.jhep.2015.01.025 CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Tanaka, I. Matsumoto, K. Iwanami, A. Inoue, R. Minami, N. Umeda, A. Kanamori, N. Ochiai, K. Miyazawa, M. Sugihara, T. Hayashi, D. Goto, S. Ito, T. Sumida, Six-transmembrane epithelial antigen of prostate4 (STEAP4) is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Mod. Rheumatol. Jpn Rheum. Assoc 22, 128–136 (2012)CrossRefGoogle Scholar
  21. 21.
    K.E. Wellen, R. Fucho, M.F. Gregor, M. Furuhashi, C. Morgan, T. Lindstad, E. Vaillancourt, C.Z. Gorgun, F. Saatcioglu, G.S. Hotamisligil, Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell 129, 537–548 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    H.T. Freyhaus, E.S. Calay, A. Yalcin, S.N. Vallerie, L. Yang, Z.Z. Calay, F. Saatcioglu, G.S. Hotamisligil, Stamp2 controls macrophage inflammation through nicotinamide adenine dinucleotide phosphate homeostasis and protects against atherosclerosis. Cell Metab. 16, 81–89 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    P. Arner, B.M. Stenson, E. Dungner, E. Naslund, J. Hoffstedt, M. Ryden, I. Dahlman, Expression of six transmembrane protein of prostate 2 in human adipose tissue associates with adiposity and insulin resistance. J. Clin. Endocrinol. Metab. 93, 2249–2254 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    V. Catalan, J. Gomez-Ambrosi, A. Rodriguez, B. Ramirez, F. Rotellar, V. Valenti, C. Silva, M.J. Gil, J. Salvador, G. Fruhbeck, Six-transmembrane epithelial antigen of prostate 4 and neutrophil gelatinase-associated lipocalin expression in visceral adipose tissue is related to iron status and inflammation in human obesity. Eur. J. Nutr. 52, 1587–1595 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    C.M. Zhang, X. Chi, B. Wang, M. Zhang, Y.H. Ni, R.H. Chen, X.N. Li, X.R. Guo, Downregulation of STEAP4, a highly-expressed TNF-alpha-inducible gene in adipose tissue, is associated with obesity in humans. Acta Pharmacol. Sin. 29, 587–592 (2008)CrossRefPubMedGoogle Scholar
  26. 26.
    J.M. Moreno-Navarrete, F. Ortega, M. Serrano, R. Perez-Perez, M. Sabater, W. Ricart, F. Tinahones, B. Peral, J.M. Fernandez-Real, Decreased STAMP2 expression in association with visceral adipose tissue dysfunction. J. Clin. Endocrinol. Metab. 96, E1816–E1825 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    F. Ozmen, M.M. Ozmen, S. Gelecek, I. Bilgic, M. Moran, T.T. Sahin, STEAP4 and HIF-1alpha gene expressions in visceral and subcutaneous adipose tissue of the morbidly obese patients. Mol. Immunol. 73, 53–59 (2016). doi: 10.1016/j.molimm.2016.03.008 CrossRefPubMedGoogle Scholar
  28. 28.
    H.M. Xu, Y.Z. Cui, W.G. Wang, H.X. Cheng, Y.J. Sun, H.Y. Zhao, Y.Q. Yan, Expression and clinical significance of obesity-associated gene STEAP4 in obese children. Genet. Mol. Res. (2016).  10.4238/gmr.15048705
  29. 29.
    T. Kin, A.M.J. Shapiro, Surgical aspects of human islet isolation. Islets 2, 265–273 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    J. Lyon, J.E. Manning Fox, A.F. Spigelman, R. Kim, N. Smith, D. O’Gorman, T. Kin, A.M.J. Shapiro, R.V. Rajotte, P.E. MacDonald, Research-focused isolation of human islets from donors with and without diabetes at the alberta diabetes institute isletcore. Endocrinology 157, 560–569 (2016). doi: 10.1210/en.2015-1562 CrossRefPubMedGoogle Scholar
  31. 31.
    M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    S. Kralisch, G. Sommer, S. Weise, J. Lipfert, U. Lossner, M. Kamprad, K. Schrock, M. Bluher, M. Stumvoll, M. Fasshauer, Interleukin-1beta is a positive regulator of TIARP/STAMP2 gene and protein expression in adipocytes in vitro. FEBS Lett. 583, 1196–1200 (2009)CrossRefPubMedGoogle Scholar
  33. 33.
    M. Fasshauer, S. Kralisch, M. Klier, U. Lossner, M. Bluher, A.M. Chambaut-Guerin, J. Klein, R. Paschke, Interleukin-6 is a positive regulator of tumor necrosis factor alpha-induced adipose-related protein in 3T3-L1 adipocytes. FEBS Lett. 560, 153–157 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    S.C. Elbein, P.A. Kern, N. Rasouli, A. Yao-Borengasser, N.K. Sharma, S.K. Das, Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes 60, 1019–1029 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Z.H. Wang, W. Zhang, H.P. Gong, Z.X. Guo, J. Zhao, Y.Y. Shang, J.B. Feng, Y. Zhang, M. Zhong, Expression of STAMP2 in monocytes associates with cardiovascular alterations. Eur. J. Clin. Invest. 40, 490–496 (2010)CrossRefPubMedGoogle Scholar
  36. 36.
    C.S. Nunemaker, Considerations for defining cytokine dose, duration, and milieu that are appropriate for modeling chronic low-grade inflammation in type 2 diabetes. J. Diabetes Res. 2016, 2846570 (2016). doi: 10.1155/2016/2846570 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    E. Maneschi, A. Morelli, S. Filippi, I. Cellai, P. Comeglio, B. Mazzanti, T. Mello, A. Calcagno, E. Sarchielli, L. Vignozzi, F. Saad, R. Vettor, G.B. Vannelli, M. Maggi, Testosterone treatment improves metabolic syndrome-induced adipose tissue derangements. J. Endocrinol. 215, 347–362 (2012)CrossRefPubMedGoogle Scholar
  38. 38.
    G. Ridic, S. Gleason, O. Ridic, Comparisons of health care systems in the United States, Germany and Canada. Mater. Socio-Medica 24, 112–120 (2012). doi: 10.5455/msm.2012.24.112-120 CrossRefGoogle Scholar
  39. 39.
    O. Cabrera, D.M. Berman, N.S. Kenyon, C. Ricordi, P.O. Berggren, A. Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    C.S. Nunemaker, L.S. Satin, Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 47, 49–63 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    H. Waki, P. Tontonoz, STAMPing out inflammation. Cell 129, 451–452 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    T. Lindstad, Y. Jin, L. Wang, S. Qu, F. Saatcioglu, STAMPs at the crossroads of cancer and nutrition. Nutr. Cancer 62, 891–895 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hannah M. Gordon
    • 1
    • 2
  • Neil Majithia
    • 3
  • Patrick E. MacDonald
    • 4
  • Jocelyn E. Manning Fox
    • 4
  • Poonam R. Sharma
    • 5
  • Frances L. Byrne
    • 6
  • Kyle L. Hoehn
    • 6
  • Carmella Evans-Molina
    • 7
    • 8
  • Linda Langman
    • 9
  • Kenneth L. Brayman
    • 9
  • Craig S. Nunemaker
    • 1
    • 2
  1. 1.Department of Biomedical SciencesOhio UniversityAthensUSA
  2. 2.Diabetes InstituteHeritage College of Osteopathic Medicine, Ohio UniversityAthensUSA
  3. 3.Department of MedicineUniversity of VirginiaCharlottesvilleUSA
  4. 4.Alberta Diabetes Institute and Department of PharmacologyUniversity of AlbertaEdmontonCanada
  5. 5.Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA
  6. 6.School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
  7. 7.Department of MedicineIndiana University School of MedicineIndianapolisUSA
  8. 8.Richard L. Roudebush VA Medical CenterIndianapolisUSA
  9. 9.Department of SurgeryUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations