Advertisement

Endocrine

, Volume 57, Issue 3, pp 464–473 | Cite as

Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure

  • F. Arturi
  • E. Succurro
  • S. Miceli
  • C. Cloro
  • M. Ruffo
  • R. Maio
  • M. Perticone
  • G. Sesti
  • F. PerticoneEmail author
Original Article

Abstract

Purpose

To compare the effect of liraglutide, sitagliptin and insulin glargine added to standard therapy on left ventricular function in post-ischemic type-2 diabetes mellitus patients.

Methods

We evaluated 32 type-2 diabetes mellitus Caucasians with history of post-ischemic chronic heart failure NYHA class II/III and/or left ventricular ejection fraction ≤45 %. Participants underwent laboratory determinations, electrocardiogram, echocardiogram, Minnesota Living with Heart Failure questionnaire and 6 min walking test at baseline and following 52 weeks treatment. Patients were treated with standard therapy for chronic heart failure and were randomized to receive liraglutide, sitagliptin and glargine in addition to metformin and/or sulfonylurea.

Results

Liraglutide treatment induced an improvement in left ventricular ejection fraction from 41.5 ± 2.2 to 46.3 ± 3 %; P = 0.001). On the contrary, treatment with sitagliptin and glargine induced no changes in left ventricular ejection fraction (41.8 ± 2.6 vs. 42.5 ± 2.5 % and 42 ± 1.5 vs. 42 ± 1.6 %, respectively; P = NS). Indexed end-systolic LV volume was reduced only in liraglutide-treated patients (51 ± 9 vs. 43 ± 8 ml/m2; P < 0.05). Liraglutide treatment induced also a significant increase in the anterograde stroke volume (39 ± 9 vs. 49 ± 11 ml; P < 0.05), whereas no differences were observed in the other two groups. Cardiac output and cardiac index showed a significant increase only in liraglutide-treated patients (4.4 ± 0.5 vs. 5.0 ± 0.6 L/min; P < 0.05 and 1.23 ± 0.26 vs. 1.62 ± 0.29 L/m2; P = 0.005, respectively).

Liraglutide treatment was also associated with an improvement of functional capacity and an improvement of quality of life.

Conclusions

These data provide evidence that treatment with liraglutide is associated with improvement of cardiac function and functional capacity in failing post-ischemic type-2 diabetes mellitus patients.

Keywords

Chronic heart failure Type 2 diabetes Liraglutide Glucagon-like peptide-1 Left ventricular ejection fraction Cardiac function 

Notes

Acknowledgments

The authors declare that they have no acknowledgments.

Funding

The authors declare that this research did not receive any specific grant from any funding agency in the public, commercial or not-for profit sector

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    I.S. Thrainsdottir, T. Aspelund, G. Thorgeirsson, V. Gudnason, T. Hardarson, K. Malmberg, G. Sigurdsson, L. Rydèn, The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 28, 612–616 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    W. Dinh, M. Lankisch, W. Nickl, D. Scheyer, T. Scheffold, F. Kramer, F. Kramer, T. Krahn, R.M. Klein, M.C. Barroso, Insulin resistance and glycemic abnormalities are associated with deterioration of left ventricular diastolic function: a cross-sectional study. Cardiovasc. Diabetol. 9, 63–74 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Rubler, J. Dlugash, Y.Z. Yuceoglu, T. Kumral, A.D. Branwood, A. Grishman, New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972)CrossRefPubMedGoogle Scholar
  4. 4.
    B. Rodrigues, M.C. Cam, J.H. McNeill, Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 27, 169–179 (1995)CrossRefPubMedGoogle Scholar
  5. 5.
    L.H. Opie, D.M. Yellon, B.J. Gersh, Controversies in the cardiovascular management of type 2 diabetes. Heart. 97, 6–14 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
    J.D. Schilling, D.L. Mann, Diabetic cardiomyopathy: bench to bedside. Heart Fail. Clin. 8, 619–631 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    D.L. Bhatt, D.P. Chew, C. Grines, D. Mukherjee, M. Leesar, I.C. Gilchrist, J.C. Corbelli, J.C. Blankenship, A. Eres, S. Steinhubl, W.A. Tan, J.R. Resar, A. AlMahameed, A. Abdel-Latif, W.H. Tang, D. Brennan, E. McErlean, S.L. Hazen, E.J. Topol, Peroxisome proliferator-activated receptor gamma agonists for the prevention of adverse events following percutaneous coronary revascularization-results of the PPAR study. Am. Heart J. 154, 137–143 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    J.A. Dormandy, B. Charbonnel, D.J. Eckland, E. Erdmann, M. Massi-Benedetti, I.K. Moules, A.M. Skene, M.H. Tan, P.J. Lefèbvre, G.D. Murray, E. Standl, R.G. Wilcox, L. Wilhelmsen, J. Betteridge, K. Birkeland, A. Golay, R.J. Heine, L. Korànyi, M. Laakso, M. Mokàn, A. Norkus, V. Pirags, T. Podar, A. Scheen, W. Scherbaum, G. Schernthaner, O. Schmitz, J. Skrha, U. Smith, J. taton; PROactive Investigators., Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone clinical trial in macrovascular events): a randomised controlled trial. Lancet. 366, 1279–1289 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    R.M. Lago, P.P. Singh, R.W. Nesto, Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet. 370, 1129–1136 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    D.T. Eurich, S.R. Majumdar, F.A. McAlister, R.T. Tsuyuki, J.A. Johnson, Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 28, 2345–2351 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    G.A. Nichols, C.E. Koro, C.M. Gullion, S.A. Ephross, J.B. Brown, The incidence of congestive heart failure associated with antidiabetic therapies. Diabetes Metab. Res. Rev. 21, 51–57 (2005)CrossRefGoogle Scholar
  12. 12.
    D.T. Eurich, F.A. McAlister, D.F. Blackburn, S.R. Majumdar, R.T. Tsuyuki, J. Varney, J.A. Johnson, Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. Br. Med. J. 8(335), 497 (2007)CrossRefGoogle Scholar
  13. 13.
    B.M. Scirica, D.L. Bhatt, E. Braunwald, P.G. Steg, J. Davidson, B. Hirshberg, P. Ohman, R. Frederich, S.D. Wiviott, E.B. Hoffman, M.A. Cavender, J.A. Udell, N.R. Desai, O. Mosenzon, D.K. McGuire, K.K. Ray, L.A. Leiter, I. Raz; SAVOR-TIMI 53 Steering Committee and Investigators., Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013)CrossRefPubMedGoogle Scholar
  14. 14.
    W.B. White, C.P. Cannon, S.R. Heller, S.E. Nissen, R.M. Bergenstal, G.L. Bakris, A.T. Perez, P.R. Fleck, C.R. Mehta, S. Kupfer, C. Wilson, W.C. Cushman, F. Zannad; EXAMINE Investigators., Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013)CrossRefPubMedGoogle Scholar
  15. 15.
    J.B. Green, M.A. Bethel, P.W. Armstrong, J.B. Buse, S.S. Engel, J. Garg, R. Josse, K.D. Kaufman, J. Koglin, S. Korn, J.M. Lachin, D.K. McGuire, M.J. Pencina, E. Standl, P.P. Stein, S. Suryawanshi, F. Van de Werf, E.D. Peterson, R.R. Holman; TECOS Study Group., Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    M.A. Pfeffer, B. Claggett, R. Diaz, K. Dickstein, H.C. Gerstein, L.V. Køber, F.C. Lawson, L. Ping, X. Wei, E.F. Lewis, A.P. Maggioni, J.J. McMurray, J.L. Probstfield, M.C. Riddle, S.D. Solomon, J.C. Tardif; ELIXA Investigators., Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015)CrossRefPubMedGoogle Scholar
  17. 17.
    B. Zinman, C. Wanner, J.M. Lachin, D. Fitchett, E. Bluhmki, S. Hantel, M. Mattheus, T. Devins, O.E. Johansen, H.J. Woerle, U.C. Broedl, S.E. Inzucchi; EMPA REG OUTCOME Investigators., Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015)CrossRefPubMedGoogle Scholar
  18. 18.
    S.P. Marso, G.H. Daniels, K. Brown-Frandsen, P. Kristensen, J.F. Mann, M.A. Nauck, S.E. Nissen, S. Pocock, N.R. Poulter, L.S. Ravn, W.M. Steinberg, M. Stockner, B. Zinman, R.M. Bergenstal, J.B. Buse; LEADER Steering Committee on Behalf of the LEADER Trial Investigators, Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. [Epub ahead of print] 375, 311–22 (2016)Google Scholar
  19. 19.
    D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 368, 1696–1705 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    J.R. Ussher, D.J. Drucker, Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    E. Montanya, G. Sesti, A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin. Ther. 31, 2472–2488 (2009)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Nauck, A. Frid, K. Hermansen, N.S. Shah, T. Tankova, I.H. Mitha, M. Ztravkovic, M. During, D.R. Matthews; LEAD-2 Study Group., Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes Care. 32, 84–90 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    J.B. Buse, J. Rosenstock, G. Sesti, W.E. Schmidt, E. Montanya, J.H. Brett, M. Zychma, L. Blonde; LEAD-6 Study Group., A study of two glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: liraglutide once daily compared with exenatide twice daily in a randomized, 26-week, open-label trial (LEAD-6). Lancet. 374, 39–47 (2009)CrossRefPubMedGoogle Scholar
  24. 24.
    R.E. Amori, J. Lau, A.G. Pittas, Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 298, 194–206 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    S.E. Inzucchi, D.K. McGuire, New drugs for the treatment of diabetes. Part II: incretin-based therapy and beyond. Circulation 117, 574–584 (2008)CrossRefGoogle Scholar
  26. 26.
    I. Thrainsdottir, K. Malmberg, A. Olsson, M. Gutniak, L. Rydén, Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab. Vasc. Dis. Res. 1, 40–43 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    L.A. Nikolaidis, S. Mankad, G. Sokos, G. Miske, A. Shah, D. Elahi, R.P. Shannon, Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 109, 962–965 (2004)CrossRefPubMedGoogle Scholar
  28. 28.
    G. Sokos, L.A. Nikolaidis, S. Mankad, D. Elahi, R.P. Shannon, Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Cardiac. Fail. 12, 694e699 (2006)CrossRefGoogle Scholar
  29. 29.
    L.M. McCormick, P.M. Heck, L.S. Ring, A.C. Kydd, S.J. Clarke, S.P. Hoole, D.P. Dutka, Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc. Diabetol. 8(14), 102 (2015)CrossRefGoogle Scholar
  30. 30.
    W.R. Chen, X.Q. Shen, Y. Zhang, Y.D. Chen, G. Qian, J. Wang, J.J. Yang, Z.F. Wang, F. Tian, Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine. 52, 516–526 (2015) doi: 10.1007/s12020-015-0798-0
  31. 31.
    M. Halbirk, H. Nørrelund, N. Møller, J.J. Holst, O. Schmitz, R. Nielsen, J.E. Nielsen-Kudsk, S.S. Nielsen, T.T. Nielsen, H. Eiskjaer, H.E. Bøtker, H. Wiggers, Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am. J. Physiol. Heart. Circ. Physiol. 298(3), H1096–102 (2010). doi: 10.1152/ajpheart.00930.2009 CrossRefPubMedGoogle Scholar
  32. 32.
    D. Nathanson, B. Ullman, U. Löfström, A. Hedman, M. Frick, A. Sjöholm, T. Nyström, Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia. 55, 926–935 (2012). doi: 10.1007/s00125-011-2440-x CrossRefGoogle Scholar
  33. 33.
    N. Mikhail, Effects of incretin-based therapy in patients with heart failure and myocardial infarction. Endocrine. 47, 21–28 (2014). doi: 10.1007/s12020-014-0175-4 CrossRefPubMedGoogle Scholar
  34. 34.
    K.B. Margulies, K.J. Anstrom, M.M. Redfield, et al. A randomized trial of liraglutide for high-risk heart failure patients with reduced ejection fraction (FIGHT). American Heart Association 2015 Scientific Sessions; 8 November 2015; Orlando, Florida. Abstract 20102 (2015)Google Scholar
  35. 35.
    M.H. Noyan-Ashraf, M.A. Momen, K. Ban, A.M. Sadi, Y.Q. Zhou, A.M. Riazi, L.L. Baggio, R.M. Henkelman, M. Husain, D.J. Drucker, GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58, 975–983 (2009)CrossRefPubMedCentralGoogle Scholar
  36. 36.
    S. Ravassa, A. Zudaire, R.D. Carr, J. Díez, Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 300, 1361–1372 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Ban, M.H. Noyan-Ashraf, J. Hoefer, S.S. Bolz, D.J. Drucker, M. Husain, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and –independent pathways. Circulation. 117, 2340–2350 (2008)CrossRefPubMedGoogle Scholar
  38. 38.
    T. Zhao, P. Parikh, S. Bhashyam, H. Bolukoglu, I. Poornima, Y.T. Shen, R.P. Shannon, Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J. Pharmacol. Exp. Ther. 317, 1106–1113 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    A. Basu, N. Charkoudian, W. Schrage, R.A. Rizza, R. Basu, M.J. Joyner, Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am. J. Physiol. Endocrinol. Metab. 293, 1289–1295 (2007)CrossRefGoogle Scholar
  40. 40.
    L.A. Nikolaidis, D. Elahi, T. Hentosz, A. Doverspike, R. Huerbin, L. Zourelias, C. Stolarski, Y.T. Shen, R.P. Shannon, Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 110, 955–961 (2004)CrossRefPubMedGoogle Scholar
  41. 41.
    A. Ceriello, K. Esposito, R. Testa, A.R. Bonfigli, M. Marra, D. Giugliano, The possible protective role of glucagon like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care. 34, 697–702 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    K. Okada, K. Kotani, H. Yagyu, A. Ando, J. Osuga, S. Ishibashi, Effects of treatment with liraglutide on oxidative stress and cardiac natriuretic peptide levels in patients with type 2 diabetes mellitus. Endocrine. 47, 962–964 (2014). doi: 10.1007/s12020-014-0246-6. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    K.E. Mayo, L.J. Miller, D. Bataille, S. Dalle, B. Goke, B. Thorens, D.J. Drucker, International union of pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev 55, 167–194 (2003)CrossRefPubMedGoogle Scholar
  44. 44.
    B. Thorens, Expression cloning of the pancreatic-cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. Natl. Acad. Sci USA 89, 8641–8645 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    L.A. Nikolaidis, D. Elahi, Y.T. Shen, R.P. Shannon, Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 289, 2401–2408 (2005)CrossRefGoogle Scholar
  46. 46.
    C.F. Deacon, A.H. Johnsen, J.J. Holst, Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995)PubMedGoogle Scholar
  47. 47.
    E. Tomas, J.A. Wood, V. Stanojevic, J.F. Habener, Glucagon-like peptide-1(9-36) amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabetes Obes. Metab. 13, 26–33 (2011)CrossRefGoogle Scholar
  48. 48.
    I.B. Poornima, S. Bhashyam, P. Parikh, H. Bolukoglu, R. Shannon, Chronic glucagon-like peptide-1 infusion sustains left ventricular function and prolongs survival in spontaneously hypertensive, heart failure prone rats. Circ. Heart Fail. 1, 153–160 (2008)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Arturi
    • 1
  • E. Succurro
    • 1
  • S. Miceli
    • 1
  • C. Cloro
    • 2
  • M. Ruffo
    • 1
  • R. Maio
    • 3
  • M. Perticone
    • 4
  • G. Sesti
    • 1
  • F. Perticone
    • 1
    Email author
  1. 1.Department of Medical and Surgical SciencesUniversity “Magna Graecia” of Catanzaro, Policlinico “Mater Domini”, Campus UniversitarioCatanzaroItaly
  2. 2.Unit of Cardiology “S.S. Annunziata” Hospital of CosenzaCosenzaItaly
  3. 3.Azienda Ospedaliera Mater DominiCatanzaroItaly
  4. 4.Department of Clinical and Experimental MedicineUniversity “Magna Graecia” of CatanzaroCatanzaroItaly

Personalised recommendations