Advertisement

Endocrine

, Volume 55, Issue 2, pp 582–590 | Cite as

Low vitamin D status is associated with advanced liver fibrosis in patients with nonalcoholic fatty liver disease

  • Bing-Bing Yang
  • Yuan-Hua Chen
  • Cheng Zhang
  • Chang-E Shi
  • Kai-Feng Hu
  • Ju Zhou
  • De-Xiang Xu
  • Xi Chen
Original Article

Abstract

Several studies explored the association between vitamin D status and nonalcoholic fatty liver disease with contradictory results. We aimed to investigate the association between vitamin D status, inflammatory cytokines and liver fibrosis in nonalcoholic fatty liver disease patients. Two hundred nineteen nonalcoholic fatty liver disease patients and 166 age- and gender- matched healthy controls were recruited for this study. Serum 25(OH)D was measured by radioimmunoassay. Serum interleukin-8 and transforming growth factor-β1 were measured using ELISA. Serum 25(OH)D was only marginally decreased in nonalcoholic fatty liver disease patients. Interestingly, serum 25(OH)D was markedly reduced in nonalcoholic fatty liver disease patients with advanced liver fibrosis compared to nonalcoholic fatty liver disease patients with indeterminate liver fibrosis and no advanced fibrosis. Logistic regression analysis showed that there was an inverse association between serum 25(OH)D and severity of liver fibrosis in nonalcoholic fatty liver disease patients. Further analysis showed that serum interleukin-8 was elevated in nonalcoholic fatty liver disease patients, the highest interleukin-8 in patients with advanced fibrosis. An inverse correlation between serum 25(OH)D and interleukin-8 was observed in nonalcoholic fatty liver disease patients with and without liver fibrosis. Although serum transforming growth factor-β1 was slightly elevated in nonalcoholic fatty liver disease patients, serum transforming growth factor-β1 was reduced in nonalcoholic fatty liver disease patients with advanced fibrosis. Unexpectedly, a positive correlation between serum 25(OH)D and transforming growth factor-β1 was observed in nonalcoholic fatty liver disease patients with advanced fibrosis. In conclusion, low vitamin D status is associated with advanced liver fibrosis in nonalcoholic fatty liver disease patients. Interleukin-8 may be an important mediator for hepatic fibrosis in nonalcoholic fatty liver disease patients with low vitamin D status.

Keywords

Vitamin D deficiency Nonalcoholic fatty liver disease Interleukin (IL)-8 Advanced liver fibrosis 

Abbreviations

NAFLD

nonalcoholic fatty liver disease

25(OH)D

25-hydroxyvitamin D

BMI

body mass index

ALT

alanine aminotransferase

AST

aspartate aminotransferase

ALP

alkaline phosphatase

GGT

glutamyltransferase

LDH

lactate dehydrogenase

HDL

high-density lipoprotein

LDL

low density lipoprotein

OR

odds ratio

NASH

nonalcoholic steatohepatitis

IL-8

interleukin-8

TGF-β

transforming growth factor-β

Notes

Acknowledgments

This project was supported by National Natural Science Foundation of China (81373495, 81471467), Natural Science Foundation of Anhui province (1308085MH120), Research Fund for Doctoral Program of Higher Education of China (20133420110005) and Research Fund for Fourth Affiliated Hospital of Anhui Medical University (FKY2014D05).

Author Contributions

XC and DXX conceived study. BBY collected data and carried out experiments. YHC and CZ carried out experiments and analyzed data. CES, KFH and JZ collected data. DXX and YHC wrote the paper. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Lazo, J.M. Clark, The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin. Liver Dis. 28, 339–350 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    N. Chalasani, Z. Younossi, J.E. Lavine, A.M. Diehl, E.M. Brunt, K. Cusi, M. Charlton, A.J. Sanyal, Americangastroenterological association; American association for the study of liver diseases;american college of gastroenterology, the diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the american association for the study of liver diseases, american college of gastroenterology, and the american gastroenterological association. Hepatology 55, 2005–2023 (2012)CrossRefPubMedGoogle Scholar
  3. 3.
    J.G. Fan, G.C. Farrell, Epidemiology of non-alcoholic fatty liver disease in China. J. Hepatol. 50, 204–210 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    G.C. Farrell, C.Z. Larter, Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43, S99–S112 (2006)CrossRefPubMedGoogle Scholar
  5. 5.
    G. Pagano, G. Pacini, G. Musso, R. Gambino, F. Mecca, N. Depetris, M. Cassader, E. David, P. Cavallo-Perin, M. Rizzetto, Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35, 367–372 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    P. Angulo, Nonalcoholic fatty liver disease. N. Engl. J.Med. 346, 1221–1231 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    C.L. Wagner, F.R. Greer, Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122, 1142–1152 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Y.H. Chen, Z. Yu, L. Fu, H. Wang, X. Chen, C. Zhang, Z.M. Lv, D.X. Xu, Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit. Sci. Rep 5, 10871 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Z.X. Tan, Y.H. Chen, S. Xu, H.Y. Qin, C. Zhang, H. Zhao, D.X. Xu, Calcitriol inhibits bleomycin-induced early pulmonary inflammatory response and epithelial-mesenchymal transition in mice. Toxicol. Lett. 240, 161–171 (2016)CrossRefPubMedGoogle Scholar
  10. 10.
    S. Xu, Y.H. Chen, Z.X. Tan, D.D. Xie, C. Zhang, Z.H. Zhang, H. Wang, H. Zhao, D.X. Yu, D.X. Xu, Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci. Rep. 5, 18687 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    A.A. Ginde, M.C. Liu, C.A. Camargo Jr, Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Arch. Intern. Med. 169, 626–632 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    E.Y. Choi, 25(OH)D status and demographic and lifestyle determinants of 25(OH)D among Korean adults. Asia Pac. J. Clin. Nutr. 21, 526–535 (2012)PubMedGoogle Scholar
  13. 13.
    Y.H. Chen, L. Fu, J.H. Hao, Z. Yu, P. Zhu, H. Wang, Y.Y. Xu, C. Zhang, F.B. Tao, D.X. Xu, Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J. Clin. Endocrinol. Metab. 100, 1912–1919 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    N.G. Forouhi, J. Luan, A. Cooper, B.J. Boucher, N.J. Wareham, Baseline serum 25-hydroxyvitamin D is predictive of future glycaemic status and insulin resistance: the medical research council ely prospective study 1990–2000. Diabetes 57, 2619–2625 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    T. Skaaby, L.L. Husemoen, C. Pisinger, T. Jørgensen, B.H. Thuesen, M. Fenger, A. Linneberg, Vitamin D status and incident cardiovascular disease and all-cause mortality: a general population study. Endocrine 43, 618–625 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    L.H. Li, X.Y. Yin, C.Y. Yao, X.C. Zhu, X.H. Wu, Serum 25-hydroxyvitamin D, parathyroid hormone, and their association withmetabolic syndrome in Chinese. Endocrine 44, 465–472 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    I. Barchetta, F. Angelico, M. Del Ben, M.G. Baroni, P. Pozzilli, S. Morini, M.G. Cavallo, Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH)vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 9, 85 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J.A. Seo, C.R. Eun, H. Cho, S.K. Lee, H.J. Yoo, S.G. Kim, K.M. Choi, S.H. Baik, D.S. Choi, H.J. Yim, C. Shin, N.H. Kim, Low vitamin D status is associated with nonalcoholic fatty liver disease independent of visceral obesity in Korean adults. PLoS ONE 8, e75197 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    L. Li, L. Zhang, S. Pan, X. Wu, X. Yin, No significant association between vitamin D and nonalcoholic fatty liver disease in a Chinese population. Dig. Dis. Sci. 58, 2376–2382 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    J. Dasarathy, P. Periyalwar, S. Allampati, Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 34, e118–e127 (2014)CrossRefPubMedGoogle Scholar
  21. 21.
    F. Bril, M. Maximos, P. Portillo-Sanchez, Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J. Hepatol. 62, 405–411 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    C.L. Roth, C.T. Elfers, D.P. Figlewicz, S.J. Melhorn, G.J. Morton, A. Hoofnagle, M.M. Yeh, J.E. Nelson, K.V. Kowdley, Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation. Hepatology 55, 1103–1111 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Kong, L. Zhu, L. Bai, Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G883–G893 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Y. Yin, Z. Yu, M. Xia, X. Luo, X. Lu, W. Ling, Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. Eur. J. Clin. Invest 42, 1189–1196 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    X.J. Liu, B.W. Wang, C. Zhang, M.Z. Xia, Y.H. Chen, C.Q. Hu, H. Wang, X. Chen, D.X. Xu, Vitamin D deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology 156, 2103–2113 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    S.H. Saverymuttu, A.E. Joseph, J.D. Maxwell, Ultrasound scanning in the detection of hepatic fibrosis and steatosis. Br. Med. J. (Clin Res Ed) 292, 13–15 (1986)CrossRefGoogle Scholar
  27. 27.
    P. Angulo, J.M. Hui, G. Marchesini, E. Bugianesi, J. George, G.C. Farrell, The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45, 846–854 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    R.K. Scragg, C.A. Camargo Jr., R.U. Simpson, Relation of serum 25-hydroxyvitamin D to heart rate and cardiac work (from the National Health and Nutrition Examination Surveys). Am. J. Cardiol. 105, 122–128 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    B.W. Hollis, Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J. Nutr. 135, 317–322 (2005)PubMedGoogle Scholar
  30. 30.
    H.L. Zhai, N.J. Wang, B. Han, Q. Li, Y. Chen, C.F. Zhu, Y.C. Chen, F.Z. Xia, Z. Cang, C.X. Zhu, M. Lu, Y.L. Lu, Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in east China: a cross-sectional study (survey on prevalence in east China for metabolic diseases and risk factors (spect-China). Br. J. Nutr. 115, 1352–1359 (2016)CrossRefPubMedGoogle Scholar
  31. 31.
    B. Terrier, F. Carrat, G. Geri, S. Pol, L. Piroth, P. Halfon, T. Poynard, J.C. Souberbielle, P. Cacoub, Low 25-OH vitamin D serum levels correlate with severe fibrosis in HIV-HCV co-infected patients with chronic hepatitis. J. Hepatol. 55, 756–761 (2011)CrossRefPubMedGoogle Scholar
  32. 32.
    C. Putz-Bankuti, S. Pilz, T. Stojakovic, H. Scharnagl, T.R. Pieber, M. Trauner, B. Obermayer-Pietsch, R.E. Stauber, Association of 25-hydroxyvitamin D levels with liver dysfunction and mortality in chronic liver disease. Liver Int. 32, 845–851 (2012)CrossRefPubMedGoogle Scholar
  33. 33.
    T. Skaaby, L.L. Husemoen, A. Borglykke, T. Jørgensen, B.H. Thuesen, C. Pisinger, L.E. Schmidt, A. Linneberg, Vitamin D status, liver enzymes, and incident liver disease and mortality: a general population study. Endocrine 47, 213–220 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    J.E. Nelson, C.L. Roth, L.A. Wilson, K.P. Yates, B. Aouizerat, V. Morgan-Stevenson, E. Whalen, A. Hoofnagle, M. Mason, V. Gersuk, M.M. Yeh, K.V. Kowdley, Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with non-alcoholic fatty liver disease: Possible role for MAPK and NF-κB?. Am. J. Gastroenterol. 111, 852–863 (2016)CrossRefPubMedGoogle Scholar
  35. 35.
    J. Dasarathy, P. Periyalwar, S. Allampati, V. Bhinder, C. Hawkins, P. Brandt, A. Khiyami, A.J. McCullough, S. Dasarathy, Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 34, e118–e127 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    M. Kugelmas, D.B. Hill, B. Vivian, L. Marsano, C.J. McClain, Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 38, 413–419 (2003)CrossRefPubMedGoogle Scholar
  37. 37.
    I.H. Bahcecioglu, M. Yalniz, H. Ataseven, N. Ilhan, I.H. Ozercan, D. Seckin, K. Sahin, Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis. Hepatogastroenterology 52, 1549–1553 (2005)PubMedGoogle Scholar
  38. 38.
    I. Barchetta, S. Carotti, G. Labbadia, U.V. Gentilucci, A.O. Muda, F. Angelico, G. Silecchia, F. Leonetti, A. Fraioli, A. Picardi, S. Morini, M.G. Cavallo, Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology 56, 2180–2187 (2012)CrossRefPubMedGoogle Scholar
  39. 39.
    N. Dauletbaev, K. Herscovitch, M. Das, H. Chen, J. Bernier, E. Matouk, J. Bérubé, S. Rousseau, L.C. Lands, Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1. Br. J. Pharmacol. 172, 4757–4771 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    I. Fabregat, J. Moreno-Càceres, A. Sánchez, S. Dooley, B. Dewidar, G. Giannelli, P. Ten Dijke; IT-LIVER Consortium, TGF-β signalling and liver disease. FEBS J. 283, 2219–2232 (2016)CrossRefPubMedGoogle Scholar
  41. 41.
    B. Schnabl, Y.O. Kweon, J.P. Frederick, X.F. Wang, R.A. Rippe, D.A. Brenner, The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34, 89–100 (2001)CrossRefPubMedGoogle Scholar
  42. 42.
    C. Liu, M.D. Gaça, E.S. Swenson, V.F. Vellucci, M. Reiss, R.G. Wells, Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J. Biol. Chem. 278, 11721–11728 (2003)CrossRefPubMedGoogle Scholar
  43. 43.
    T. Hasegawa, M. Yoneda, K. Nakamura, I. Makino, A. Terano, Plasma transforming growth factor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: A pilot study. Aliment. Pharmacol. Ther. 15, 1667–1672 (2001)CrossRefPubMedGoogle Scholar
  44. 44.
    A. Cayón, J. Crespo, M. Mayorga, A. Guerra, F. Pons-Romero, Increased expression of Ob-Rb and its relationship with the overexpression of TGF-β1 and the stage of fibrosis in patients with nonalcoholic steatohepatitis. Liver Int. 26, 1065–1071 (2006)CrossRefPubMedGoogle Scholar
  45. 45.
    G. Tarantino, P. Conca, A. Riccio, M. Tarantino, M.N. Di Minno, D. Chianese, F. Pasanisi, F. Contaldo, F. Scopacasa, D. Capone, Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign?. J. Transl. Med. 6, 72 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    R.N. Sepúlveda-Flores, L. Vera-Cabrera, J.P. Flores-Gutiérrez, H. Maldonado-Garza, R. Salinas-Garza, P. Zorrilla-Blanco, F.J. Bosques-Padilla, Obesity-related non-alcoholic steatohepatitis and TGF-beta1 serum levels in relation to morbid obesity. Ann. Hepatol. 1, 36–39 (2002)PubMedGoogle Scholar
  47. 47.
    B.J. Song, D.C. Rockey, 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human α1(I) collagen expression and type I collagen formation. Liver Int. 33, 653–655 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    A. Beilfuss, J.P. Sowa, S. Sydor, M. Beste, L.P. Bechmann, M. Schlattjan, W.K. Syn, I. Wedemeyer, Z. Mathé, C. Jochum, G. Gerken, R.K. Gieseler, A. Canbay, Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut 64, 791–799 (2015)CrossRefPubMedGoogle Scholar
  49. 49.
    D.D. Bikle, Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 21, 319–29 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    I. Schuster, Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta 1814, 186–199 (2011)CrossRefPubMedGoogle Scholar
  51. 51.
    T. Skaaby, L.L. Husemoen, C. Pisinger, T. Jorgensen, B.H. Thuesen, K. Rasmussen, M. Fenger, P. Rossing, A. Linneberg, Vitamin D status and 5-year changes in urine albumin creatinine ratio and parathyroid hormone in a general population. Endocrine 44, 473–480 (2013)CrossRefPubMedGoogle Scholar
  52. 52.
    T. Skaaby, L.L. Husemoen, A. Linneberg, Does liver damage explain the inverse association between vitamin D status and mortality?. Ann. Epidemiol. 23, 812–814 (2013)CrossRefPubMedGoogle Scholar
  53. 53.
    T. Skaaby, L.L. Husemoen, C. Pisinger, T. Jorgensen, B.H. Thuesen, M. Fenger, A. Linneberg, Vitamin D status and changes in cardiovascular risk factors: a prospective study of a general population. Cardiology 123, 62–70 (2012)CrossRefPubMedGoogle Scholar
  54. 54.
    T. Skaaby, L.L. Husemoen, T. Martinussen, J.P. Thyssen, M. Melgaard, B.H. Thuesen, C. Pisinger, T. Jørgensen, J.D. Johansen, Vitamin D status, filaggrin genotype, and cardiovascular risk factors: a Mendelian randomization approach. PLoS ONE 8, e57647 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bing-Bing Yang
    • 1
  • Yuan-Hua Chen
    • 3
    • 4
  • Cheng Zhang
    • 3
  • Chang-E Shi
    • 1
  • Kai-Feng Hu
    • 1
  • Ju Zhou
    • 1
  • De-Xiang Xu
    • 3
  • Xi Chen
    • 2
  1. 1.Department of GastroenterologyFourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
  2. 2.Department of GastroenterologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
  3. 3.Department of ToxicologyAnhui Medical UniversityHefeiChina
  4. 4.Department of Histology and EmbryologyAnhui Medical UniversityHefeiChina

Personalised recommendations