, Volume 55, Issue 2, pp 435–446 | Cite as

Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity

  • Diego Pérez-Sotelo
  • Arturo Roca-Rivada
  • María Larrosa-García
  • Cecilia Castelao
  • Iván Baamonde
  • Javier Baltar
  • Ana Belen Crujeiras
  • Luisa María Seoane
  • Felipe F. Casanueva
  • María PardoEmail author
Original Article


The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In conclusion, visceral adipose tissue secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue and this secretion is more sensitive to nutritional and physiological changes. The over-secretion of alpha-2-Heremans-Schmid glycoprotein by visceral adipose tissue, the increased secretion of the active phosphorylated form by subcutaneous adipose tissuein obese animals, and the adipose-derived alpha-2-Heremans-Schmid glycoprotein capacity to inhibit the insulin pathway suggest the participation of adipose-derived alpha-2-Heremans-Schmid glycoprotein in the deleterious effects of obesity.


α2HSG Adipose tissue Adipokine Insulin resistance Obesity 



This research has been funded by Instituto de Salud Carlos III-cofinanciado FEDER (PI10/00537). Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición is an ISCIII iniciative. D.P-S is funded by the Health Research Institute of Santiago (IDIS) and M.P is a Miguel Servet Fellow (Instituto de Salud Carlos III/SERGAS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    B. Denecke, S. Graber, C. Schafer, A. Heiss, M. Woltje, W. Jahnen-Dechent, Biochem. J. 376, 135 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    K. Mori, M. Emoto, M. Inaba, Recent Pat. Endocr. Metab. Immune. Drug Discov. 5, 124 (2011)CrossRefPubMedGoogle Scholar
  3. 3.
    S.T. Mathews, N. Chellam, P.R. Srinivas, V.J. Cintron, M.A. Leon, A.S. Goustin, G. Grunberger, Mol. Cell. Endocrinol. 164, 87 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    A.M. Hennige, H. Staiger, C. Wicke, F. Machicao, A. Fritsche, H.U. Haring, N. Stefan, PLoS ONE 3, e1765 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    K. Mori, M. Emoto, H. Yokoyama, T. Araki, M. Teramura, H. Koyama, T. Shoji, M. Inaba, Y. Nishizawa, Diabetes. Care 29, 468 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    N. Stefan, A. Fritsche, C. Weikert, H. Boeing, H.G. Joost, H.U. Haring, M.B. Schulze, Diabetes 57, 2762 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    J.H. Ix, K. Sharma, J. Am. Soc. Nephrol. 21, 406 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    A.C. Haglund, B. Ek, P. Ek, Biochem. J. 357, 437 (2001)PubMedPubMedCentralGoogle Scholar
  9. 9.
    A. Siddiq, F. Lepretre, S. Hercberg, P. Froguel, F. Gibson, Diabetes 54, 2477 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    I. Dahlman, P. Eriksson, M. Kaaman, H. Jiao, C.M. Lindgren, J. Kere, P. Arner, Diabetologia 47, 1974 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    S.T. Mathews, G.P. Singh, M. Ranalletta, V.J. Cintron, X. Qiang, A.S. Goustin, K.L. Jen, M.J. Charron, W. Jahnen-Dechent, G. Grunberger, Diabetes 51, 2450 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    S. Dasgupta., D. Pal, R. Kundu, S. Maitra, G. Das, S. Mukhopadhyay, S. Ray, S.S. Majumdar, S. Bhattacharya, Nat. Med. 18, 1279 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    C.C. Lee, B.H. Bowman, F.M. Yang, Proc. Natl Acad. Sci. U S A 84, 4403 (1987)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J. Kellermann, H. Haupt, E.A. Auerswald, W. Muller-Ester, J. Biol. Chem. 264, 14121 (1989)PubMedGoogle Scholar
  15. 15.
    P. Auberger, L. Falquerho, J.O. Contreres, G. Pages, G. Le Cam, B. Rossi, A. Le Cam, Cell 58, 631 (1989)CrossRefPubMedGoogle Scholar
  16. 16.
    K.M. Dziegielewska, W.M. Brown, A. Deal, K.A. Foster, The expression of fetuin in the development and maturation of the hemopoietic and immune systems. Histochem. Cell Biol. 106, 319 (1996). doi: 10.1007/BF02473242
  17. 17.
    W. Jahnen-Dechent, A. Trindl, J. Godovac-Zimmermann, W. Muller-Esterl, Eur. J. Biochem. 226, 59 (1994)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Roca-Rivada, J. Alonso, O. Al-Massadi, C. Castelao, J.R. Peinado, L.M. Seoane, F.F. Casanueva, M. Pardo, J. Proteomics 74, 1068 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    P. Chatterjee, S. Seal, S. Mukherjee, R. Kundu, S. Ray, S. Mukhopadhyay, S.S. Majumdar, S. Bhattacharya, J. Biol. Chem. 288, 28324 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    I. Jialal, S. Devaraj, A. Bettaieb, F. Haj, B. Adams-Huet, Atherosclerosis 241, 130 (2015)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Routtenberg, A.W. Kuznesof, J. Comp. Physiol. Psychol. 64, 414 (1967)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Pardo, A. Roca-Rivada, O. Al-Massadi, L.M. Seoane, J.P. Camina, F.F. Casanueva, Peptides 31, 1912 (2010)CrossRefPubMedGoogle Scholar
  23. 23.
    G. Alvarez-Llamas, E. Szalowska, M.P. de Vries, D. Weening, K. Landman, A. Hoek, B.H. Wolffenbuttel, H. Roelofsen, R.J. Vonk, Mol. Cell. Proteomics 6, 589 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    Q.-Q. Tang, T.C. Otto, M.D. Lane, Proc. Natl. Acad. Sci. U S A 101, 9607 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    U. Gurriarán-Rodríguez, O. Al-Massadi, A. Roca-Rivada, A.B. Crujeiras, R. Gallego, M. Pardo, L.M. Seoane, Y. Pazos, F.F. Casanueva, J.P. Camiña, J. Cell Mol. Med. 15, 1927 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    J.F. Trepanowski, J. Mey, K.A. Varady, Int. J. Obes. (Lond). 39, 734 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Samocha-Bonet, C.S. Tam, L.V. Campbell, L.K. Heilbronn, Diabetes Care 37, e15 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    K.N. Robinson, M. Teran-Garcia, Biochimie 124, 141 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    S.K. Malin, J.P. del Rincon, H. Huang, J.P. Kirwan, Med. Sci. Sports Exerc. 46, 2085 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    S.K. Malin, A. Mulya, C.E. Fealy, J.M. Haus, M.R. Pagadala, A.R. Scelsi, H. Huang, C.A. Flask, A.J. McCullough, J.P. Kirwan, J. Appl. Physiol. 115, 988 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    K.M. Choi, K.A. Han, H.J. Ahn, S.Y. Lee, S.Y. Hwang, B.-H. Kim, H.C. Hong, H.Y. Choi, S.J. Yang, H.J. Yoo, S.H. Baik, D.S. Choi, K.W. Min, Clin. Endocrinol. (Oxf). 79, 356 (2013)CrossRefPubMedGoogle Scholar
  32. 32.
    P. Patel, N. Abate, Nutrients 5, 2019 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M.N. Kundranda, S. Ray, M. Saria, D. Friedman, L.M. Matrisian, P. Lukyanov, J. Ochieng, Biochim. Biophys. Acta 1693, 111 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    T. Maier, M. Güell, L. Serrano, FEBS Lett. 583, 3966 (2009)CrossRefPubMedGoogle Scholar
  35. 35.
    C. Vogel, E.M. Marcotte, Nat. Rev. Genet. 13, 227 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diego Pérez-Sotelo
    • 1
  • Arturo Roca-Rivada
    • 1
    • 2
  • María Larrosa-García
    • 1
  • Cecilia Castelao
    • 1
    • 2
    • 3
  • Iván Baamonde
    • 4
  • Javier Baltar
    • 4
  • Ana Belen Crujeiras
    • 2
    • 5
  • Luisa María Seoane
    • 2
    • 3
  • Felipe F. Casanueva
    • 2
    • 5
  • María Pardo
    • 1
    • 2
    Email author
  1. 1.Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS)Santiago de CompostelaSpain
  2. 2.CIBER Fisiopatología Obesidad y NutriciónInstituto de Salud Carlos IIIMadridSpain
  3. 3.Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS)Santiago de CompostelaSpain
  4. 4.Servicio de Cirugía GeneralXerencia de Xestión Integrada de Santiago (XXIS/SERGAS)Santiago de CompostelaSpain
  5. 5.Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS)Santiago de CompostelaSpain

Personalised recommendations