, Volume 54, Issue 3, pp 808–817 | Cite as

Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model

  • Marta Carnovali
  • Livio Luzi
  • Giuseppe Banfi
  • Massimo MariottiEmail author
Original Article


Type II diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia that induce other pathologies including diabetic retinopathy and bone disease. The mechanisms implicated in bone alterations induced by type II diabetes mellitus have been debated for years and are not yet clear because there are other factors involved that hide bone mineral density alterations. Despite this, it is well known that chronic hyperglycemia affects bone health causing fragility, mechanical strength reduction and increased propensity of fractures because of impaired bone matrix microstructure and aberrant bone cells function. Adult Danio rerio (zebrafish) represents a powerful model to study glucose and bone metabolism. Then, the aim of this study was to evaluate bone effects of chronic hyperglycemia in a new type II diabetes mellitus zebrafish model created by glucose administration in the water. Fish blood glucose levels have been monitored in time course experiments and basal glycemia was found increased. After 1 month treatment, the morphology of the retinal blood vessels showed abnormalities resembling to the human diabetic retinopathy. The adult bone metabolism has been evaluated in fish using the scales as read-out system. The scales of glucose-treated fish didn’t depose new mineralized matrix and shown bone resorption lacunae associated with an intense osteoclast activity. In addition, hyperglycemic fish scales have shown a significant decrease of alkaline phosphatase activity and increase of tartrate-resistant acid phosphatase activity, in association with alterations in other bone-specific markers. These data indicates an imbalance in bone metabolism, which leads to the osteoporotic-like phenotype visualized through scale mineral matrix staining. The zebrafish model of hyperglycemic damage can contribute to elucidate in vivo the molecular mechanisms of metabolic changes, which influence the bone tissues regulation in human diabetic patients.


Zebrafish Scale Type 2 diabetes mellitus Osteoporosis Bone 



This work was supported by Ricerca Corrente funds of the Ministero della Salute (Italy).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    K. Wongdee, N. Charoenphandhu, Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J. Diabetes 2(3), 41–48 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    K. Wongdee, N. Charoenphandhu, Update on type 2 diabetes-related osteoporosis. World J. Diabetes 685, 673–678 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Napoli, R. Strollo, A. Paladini, S.I. Briganti, P. Pozzilli, S. Epstein, The alliance of mesenchymal stem cells, bone, and diabetes. Int. J. Endocrinol. 2014, 690783 (2014)Google Scholar
  4. 4.
    M. Saito, K. Marumo, Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabete mellitus. Ostoporos. Int. 21(2), 195–214 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Yamaguchi, Bone fragility in type 2 diabetes mellitus. World J. Orthop. 18:1(1), 3–9 (2010)CrossRefGoogle Scholar
  6. 6.
    N. Ogawa, T. Yamaguchi, S. Yano, M. Yamuchi, M. Yamamoto, T. Sugimoto, The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm. Metab. Res. 39(12), 871–875 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    Y. Alvarez, K. Chen, A.L. Reynolds, N. Waghorne, J.J. O’Connor, B.N. Kennedy, Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy. Dis. Model. Mech. 3, 236–245 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    M. Gleeson, V. Connaughton, L.S. Arneson, Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol. 44, 157–163 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    J.Y. Sire, F. Allizard, O. Babiar et al. Scale development in zebrafish (Danio rerio). J. Anat. 190, 545–561 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    P.E. Witten, A. Huysseune, A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol. Rev. Camb. Philos. Soc. 84(2), 315–346 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    E. de Vrieze, J.R. Metz, J.W.V. Hoff, G. Flik, ALP, TRAcP and cathepsin K in elasmoid scales: a role in mineral metabolism? J. Appl. Ichthyol. 26(2), 210–213 (2010)Google Scholar
  12. 12.
    N. Suzuki, J.A. Danks, Y. Maruyama et al. Parathyroid hormone 1 (1-34) acts on the scales and involves calcium metabolism in goldfish. Bone 48(5), 1186–1193 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    C.H. Lin, C.H. Su, P.P. Hwang, Calcium-sensing receptor mediates Ca(2+) homeostasis by modulating expression of PTH and stanniocalcin. Endocrinology 155(1), 56–67 (2014)CrossRefPubMedGoogle Scholar
  14. 14.
    N. Suzuki, M. Yamamoto, K. Watanabe, A. Kambegawa, A. Hattori, Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J. Bone Miner. Metab. 22(5), 439–46 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    M. Westerfield., The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 5th edition. University of Oregon Press, Eugene, 2007Google Scholar
  16. 16.
    S.C. Eames, L.H. Philipson, V.E. Prince, M.D. Kinkel, Blood sugar measurement in zebrafish reveals dynamic of glucose homeostasis. Zebrafish 7, 205–213 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    K.M. Capiotti, R. Antonioli Jr., L. Wilges Kist, M. Reis Bogo, C.D. Bonan, R. Souza Da Silva, Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp. Biochem. Physiol. B 171, 58–65 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    S. Pasqualetti, G. Banfi, M. Mariotti, Osteoblast and osteoclast behavior in zebrafish cultured scales. Cell Tissue Res 350(1), 69–75 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    P. Persson, Y. Takagi, B. Bjornsson, Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol. Biochem. 14, 329–339 (1995)CrossRefPubMedGoogle Scholar
  20. 20.
    K. Kitamura, K. Takahira, M. Inari et al. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts. Comp. Biochem. Physiol. A Mol. Integr. Physiol 166(1), 74–80 (2013)CrossRefPubMedGoogle Scholar
  21. 21.
    R.J. Fajardo, L. Karim, V.I. Calley, M.L. Bouxsein, A review of rodent models of type 2 diabetic skeletal fragility. J. Bone Miner. Res. 29, 1025–1040 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A. Kautzky-Willer, J. Harreiter, G. Pacini, Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev 37(3), 278–316 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M.R. Liggett, M.J. Hoy, M. Mastroianni, M.A. Mondoux, High-glucose diets have sex-specific effects on aging in C. elegans: toxic to hermaphrodites but beneficial to males. Aging 7(6), 383–388 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    J.S. Ruff, A.K. Suchy, S.A. Hugentobler et al. Human-relevant levels of added sugar consumption increase female mortality and lower male fitness in mice. Nat. Commun 4, 2245 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Y. Katsuda, T. Ohta, K. Miyajima, Y. Kemmochi, T. Sasase, B. Tong, M. Shinohara, T. Yamada, Diabetic complications in obese type 2 diabetic rat models. Exp. Anim 63(2), 121–132 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    L.Y. Weerasekera, L.A. Balmer, R. Ram, G. Morahan, Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 56, 3721–3730 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Wu, W. Ai, L. Chen, S. Zhao, E. Liu, Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int. J. Mol. Med 37(3), 565–574 (2016)PubMedPubMedCentralGoogle Scholar
  28. 28.
    K.H. Ding, Z.Z. Wang, M.W. Hamrick, Z.B. Deng, L. Zhou, B. Kang, S.L. Yan, D.M. She, D.M. Stem, C.M. Isales, Q.S. Mi, Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem. Biophys. Res. Commun 340(4), 1091–1097 (2006)CrossRefPubMedGoogle Scholar
  29. 29.
    A.S. Olsen, M.P. Sarras Jr, R.V. Intine, Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen. 18(5), 532–542 (2010)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marta Carnovali
    • 1
  • Livio Luzi
    • 2
    • 3
  • Giuseppe Banfi
    • 5
  • Massimo Mariotti
    • 4
    • 6
    Email author
  1. 1.Gruppo Ospedaliero San Donato FoundationMilanItaly
  2. 2.Policlinico San Donato IRCCSMilanItaly
  3. 3.Dep. Biomedical Sciences for HealthUniversity of MilanMilanItaly
  4. 4.IRCCS Galeazzi Orthopedic InstituteMilanItaly
  5. 5.Vita-Salute San Raffaele UniversityMilanItaly
  6. 6.Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly

Personalised recommendations