, Volume 54, Issue 2, pp 524–531 | Cite as

Oxytocin in survivors of childhood-onset craniopharyngioma

  • Anna M. M. Daubenbüchel
  • Anika Hoffmann
  • Maria Eveslage
  • Jale Özyurt
  • Kristin Lohle
  • Julia Reichel
  • Christiane M. Thiel
  • Henri Martens
  • Vincent Geenen
  • Hermann L. MüllerEmail author
Original Article


Quality of survival of childhood-onset craniopharyngioma patients is frequently impaired by hypothalamic involvement or surgical lesions sequelae such as obesity and neuropsychological deficits. Oxytocin, a peptide hormone produced in the hypothalamus and secreted by posterior pituitary gland, plays a major role in regulation of behavior and body composition. In a cross-sectional study, oxytocin saliva concentrations were analyzed in 34 long-term craniopharyngioma survivors with and without hypothalamic involvement or treatment-related damage, recruited in the German Childhood Craniopharyngioma Registry, and in 73 healthy controls, attending the Craniopharyngioma Support Group Meeting 2014. Oxytocin was measured in saliva of craniopharyngioma patients and controls before and after standardized breakfast and associations with gender, body mass index, hypothalamic involvement, diabetes insipidus, and irradiation were analyzed. Patients with preoperative hypothalamic involvement showed similar oxytocin levels compared to patients without hypothalamic involvement and controls. However, patients with surgical hypothalamic lesions grade 1 (anterior hypothalamic area) presented with lower levels (p = 0.017) of oxytocin under fasting condition compared to patients with surgical lesion of posterior hypothalamic areas (grade 2) and patients without hypothalamic lesions (grade 0). Craniopharyngioma patients’ changes in oxytocin levels before and after breakfast correlated (p = 0.02) with their body mass index. Craniopharyngioma patients continue to secrete oxytocin, especially when anterior hypothalamic areas are not involved or damaged, but oxytocin shows less variation due to nutrition. Oxytocin supplementation should be explored as a therapeutic option in craniopharyngioma patients with hypothalamic obesity and/or behavioral pathologies due to lesions of specific anterior hypothalamic areas. Clinical trial number: KRANIOPHARYNGEOM 2000/2007(NCT00258453; NCT01272622).


Craniopharyngioma Hypothalamus Obesity Oxytocin Behavior 



We thank all patients who participated in this study. We are grateful for the help of Margarita Neff-Heinrich, Göttingen, Germany, in proofreading and editing the manuscript. H. L. Müller is supported by the German Childhood Cancer Foundation, Bonn, Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H.L. Muller, Craniopharyngioma. Endocr. Rev. 35(3), 513–543 (2014). doi: 10.1210/er.2013-1115 CrossRefPubMedGoogle Scholar
  2. 2.
    H.L. Muller, Consequences of craniopharyngioma surgery in children. J. Clin. Endocrinol. Metab. 96(7), 1981–1991 (2011). doi: 10.1210/jc.2011-0174 CrossRefPubMedGoogle Scholar
  3. 3.
    O.M. Dekkers, N.R. Biermasz, J.W. Smit, L.E. Groot, F. Roelfsema, J.A. Romijn, A.M. Pereira, Quality of life in treated adult craniopharyngioma patients. Eur. J. Endocrinol. 154(3), 483–489 (2006). doi: 10.1530/eje.1.02114 CrossRefPubMedGoogle Scholar
  4. 4.
    A.S. Sterkenburg, A. Hoffmann, U. Gebhardt, M. Warmuth-Metz, A.M. Daubenbuchel, H.L. Muller, Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 17(7), 1029–1038 (2015). doi: 10.1093/neuonc/nov044 CrossRefPubMedGoogle Scholar
  5. 5.
    A. Bereket, W. Kiess, R.H. Lustig, H.L. Muller, A.P. Goldstone, R. Weiss, Y. Yavuz, Z. Hochberg, Hypothalamic obesity in children. Obes. Rev. 13(9), 780–798 (2012). doi: 10.1111/j.1467-789X.2012.01004.x CrossRefPubMedGoogle Scholar
  6. 6.
    G. Zada, E.R. Laws, Surgical management of craniopharyngiomas in the pediatric population. Horm. Res. Paediatr 74(1), 62–66 (2010). doi: 10.1159/000309349 CrossRefPubMedGoogle Scholar
  7. 7.
    H.L. Muller, Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 23(1), 81–89 (2016). doi: 10.1097/MED.0000000000000214 CrossRefPubMedGoogle Scholar
  8. 8.
    A. Acevedo-Rodriguez, S.K. Mani, R.J. Handa, Oxytocin and estrogen receptor beta in the brain: an overview. Front. Endocrinol. (Lausanne) 6, 160 (2015). doi: 10.3389/fendo.2015.00160 Google Scholar
  9. 9.
    H.J. Lee, A.H. Macbeth, J.H. Pagani, W.S. Young 3rd, Oxytocin: the great facilitator of life. Prog. Neurobiol. 88(2), 127–151 (2009). doi: 10.1016/j.pneurobio.2009.04.001 PubMedPubMedCentralGoogle Scholar
  10. 10.
    E. Frank, R. Landgraf, The vasopressin system--from antidiuresis to psychopathology. Eur. J. Pharmacol. 583(2-3), 226–242 (2008). doi: 10.1016/j.ejphar.2007.11.063 CrossRefPubMedGoogle Scholar
  11. 11.
    E.A. Lawson, D.A. Marengi, R.L. DeSanti, T.M. Holmes, D.A. Schoenfeld, C.J. Tolley, Oxytocin reduces caloric intake in men. Obesity (Silver Spring) 23(5), 950–956 (2015). doi: 10.1002/oby.21069 CrossRefGoogle Scholar
  12. 12.
    M. Olff, J.L. Frijling, L.D. Kubzansky, B. Bradley, M.A. Ellenbogen, C. Cardoso, J.A. Bartz, J.R. Yee, M. van Zuiden, The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 38(9), 1883–1894 (2013). doi: 10.1016/j.psyneuen.2013.06.019 CrossRefPubMedGoogle Scholar
  13. 13.
    H.E. Ross, L.J. Young, Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 30(4), 534–547 (2009). doi: 10.1016/j.yfrne.2009.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    T.R. Insel, The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65(6), 768–779 (2010). doi: 10.1016/j.neuron.2010.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    P.S. Churchland, P. Winkielman, Modulating social behavior with oxytocin: how does it work? What does it mean? Horm. Behav. 61(3), 392–399 (2012). doi: 10.1016/j.yhbeh.2011.12.003 CrossRefPubMedGoogle Scholar
  16. 16.
    M. Tauber, C. Mantoulan, P. Copet, J. Jauregui, G. Demeer, G. Diene, B. Roge, V. Laurier, V. Ehlinger, C. Arnaud, C. Molinas, D. Thuilleaux, Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J. Rare Dis. 6, 47 (2011). doi: 10.1186/1750-1172-6-47 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M.F. Rolland-Cachera, T.J. Cole, M. Sempe, J. Tichet, C. Rossignol, A. Charraud, Body mass index variations: centiles from birth to 87 years. Eur. J. Clin. Nutr. 45(1), 13–21 (1991)PubMedGoogle Scholar
  18. 18.
    H.L. Muller, U. Gebhardt, C. Teske, A. Faldum, I. Zwiener, M. Warmuth-Metz, T. Pietsch, F. Pohl, N. Sorensen, G. Calaminus, Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur. J. Endocrinol. 165(1), 17–24 (2011). doi: 10.1530/EJE-11-0158 CrossRefPubMedGoogle Scholar
  19. 19.
    H.L. Muller, U. Gebhardt, A. Faldum, M. Warmuth-Metz, T. Pietsch, F. Pohl, G. Calaminus, N. Sorensen, Xanthogranuloma, Rathke’s cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J. Clin. Endocrinol. Metab. 97(11), 3935–3943 (2012). doi: 10.1210/jc.2012-2069 CrossRefPubMedGoogle Scholar
  20. 20.
    C. Pequeux, J.C. Hendrick, M.T. Hagelstein, V. Geenen, J.J. Legros, Novel plasma extraction procedure and development of a specific enzyme-immunoassay of oxytocin: application to clinical and biological investigations of small cell carcinoma of the lung. Scand. J. Clin. Lab. Invest. 61(5), 407–415 (2001)CrossRefPubMedGoogle Scholar
  21. 21.
    W.S. Young 3rd, H. Gainer, Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology 78(4), 185–203 (2003). doi: 10.1159/000073702 CrossRefPubMedGoogle Scholar
  22. 22.
    M. Ludwig, N. Sabatier, P.M. Bull, R. Landgraf, G. Dayanithi, G. Leng, Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418(6893), 85–89 (2002). doi: 10.1038/nature00822 CrossRefPubMedGoogle Scholar
  23. 23.
    D.V. Pow, J.F. Morris, Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32(2), 435–439 (1989)CrossRefPubMedGoogle Scholar
  24. 24.
    D.A. Baribeau, E. Anagnostou, Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci 9, 335 (2015). doi: 10.3389/fnins.2015.00335 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    H.G. Bauer, Endocrine and other clinical manifestations of hypothalamic disease; a survey of 60 cases, with autopsies. J. Clin. Endocrinol. Metab. 14(1), 13–31 (1954). doi: 10.1210/jcem-14-1-13 CrossRefPubMedGoogle Scholar
  26. 26.
    G.J. Morton, D.E. Cummings, D.G. Baskin, G.S. Barsh, M.W. Schwartz, Central nervous system control of food intake and body weight. Nature 443(7109), 289–295 (2006). doi: 10.1038/nature05026 CrossRefPubMedGoogle Scholar
  27. 27.
    J.M. Ho, J.E. Blevins, Coming full circle: contributions of central and peripheral oxytocin actions to energy balance. Endocrinology 154(2), 589–596 (2013). doi: 10.1210/en.2012-1751 CrossRefPubMedGoogle Scholar
  28. 28.
    G. Zhang, H. Bai, H. Zhang, C. Dean, Q. Wu, J. Li, S. Guariglia, Q. Meng, D. Cai, Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69(3), 523–535 (2011). doi: 10.1016/j.neuron.2010.12.036 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    G.J. Morton, B.S. Thatcher, R.D. Reidelberger, K. Ogimoto, T. Wolden-Hanson, D.G. Baskin, M.W. Schwartz, J.E. Blevins, Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 302(1), E134–144 (2012). doi: 10.1152/ajpendo.00296.2011 CrossRefPubMedGoogle Scholar
  30. 30.
    B.R. Olson, M.D. Drutarosky, M.S. Chow, V.J. Hruby, E.M. Stricker, J.G. Verbalis, Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12(1), 113–118 (1991)CrossRefPubMedGoogle Scholar
  31. 31.
    Y. Wu, E. van Dijk, X. Zhou, Evaluating self- vs. other-owned objects: the modulatory role of oxytocin. Biol. Psychol. 92(2), 179–184 (2013). doi: 10.1016/j.biopsycho.2012.11.011 CrossRefPubMedGoogle Scholar
  32. 32.
    D. Cai, S. Purkayastha, A new horizon: oxytocin as a novel therapeutic option for obesity and diabetes. Drug Discov. Today Dis. Mech. 10(1-2), e63–e68 (2013). doi: 10.1016/j.ddmec.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    J.E. Blevins, J.M. Ho, Role of oxytocin signaling in the regulation of body weight. Rev. Endocr. Metab. Disord. 14(4), 311–329 (2013). doi: 10.1007/s11154-013-9260-x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    V. Ott, G. Finlayson, H. Lehnert, B. Heitmann, M. Heinrichs, J. Born, M. Hallschmid, Oxytocin reduces reward-driven food intake in humans. Diabetes 62(10), 3418–3425 (2013). doi: 10.2337/db13-0663 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    W. Qian, T. Zhu, B. Tang, S. Yu, H. Hu, W. Sun, R. Pan, J. Wang, D. Wang, L. Yang, C. Mao, L. Zhou, G. Yuan, Decreased circulating levels of oxytocin in obesity and newly diagnosed type 2 diabetic patients. J. Clin. Endocrinol. Metab. 99(12), 4683–4689 (2014). doi: 10.1210/jc.2014-2206 CrossRefPubMedGoogle Scholar
  36. 36.
    N. Cook, J. Miller, J. Hart, Parent observed neuro-behavioral and pro-social improvements with oxytocin following surgical resection of craniopharyngioma. J. Pediatr. Endocrinol. Metab. (2016) doi: 10.1515/jpem-2015-0445. (in press)
  37. 37.
    R. Sobota, T. Mihara, A. Forrest, R.E. Featherstone, S.J. Siegel, Oxytocin reduces amygdala activity, increases social interactions, and reduces anxiety-like behavior irrespective of NMDAR antagonism. Behav. Neurosci. 129(4), 389–398 (2015). doi: 10.1037/bne0000074 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    K. Lancaster, C.S. Carter, H. Pournajafi-Nazarloo, T. Karaoli, T.S. Lillard, A. Jack, J.M. Davis, J.P. Morris, J.J. Connelly, Plasma oxytocin explains individual differences in neural substrates of social perception. Front. Hum. Neurosci. 9, 132 (2015). doi: 10.3389/fnhum.2015.00132 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    M.E. McCullough, P.S. Churchland, A.J. Mendez, Problems with measuring peripheral oxytocin: can the data on oxytocin and human behavior be trusted? Neurosci. Biobehav. Rev 37(8), 1485–1492 (2013). doi: 10.1016/j.neubiorev.2013.04.018 CrossRefPubMedGoogle Scholar
  40. 40.
    I.D. Neumann, R. Landgraf, Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35(11), 649–659 (2012). doi: 10.1016/j.tins.2012.08.004 CrossRefPubMedGoogle Scholar
  41. 41.
    G. Lippi, G.C. Guidi, C. Mattiuzzi, M. Plebani, Preanalytical variability: the dark side of the moon in laboratory testing. Clin. Chem. Lab. Med. 44(4), 358–365 (2006). doi: 10.1515/CCLM.2006.073 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna M. M. Daubenbüchel
    • 1
    • 2
  • Anika Hoffmann
    • 1
  • Maria Eveslage
    • 3
  • Jale Özyurt
    • 4
  • Kristin Lohle
    • 1
  • Julia Reichel
    • 1
  • Christiane M. Thiel
    • 4
    • 5
  • Henri Martens
    • 6
  • Vincent Geenen
    • 6
  • Hermann L. Müller
    • 1
    Email author
  1. 1.Department of Pediatrics, Klinikum Oldenburg AöRMedical Campus University OldenburgOldenburgGermany
  2. 2.University Medical Centre Groningen (UMCG), University of GroningenGroningenThe Netherlands
  3. 3.Institute of Biostatistics and Clinical ResearchUniversity of MünsterMünsterGermany
  4. 4.Biological Psychology Lab, Department of Psychology, Faculty of Medicine and Health SciencesCarl von Ossietzky UniversityOldenburgGermany
  5. 5.Research Center Neurosensory Science and Cluster of Excellence “Hearing4all”Carl von Ossietzky UniversityOldenburgGermany
  6. 6.GIGA-I3 Center of ImmunoendocrinologyUniversity of Liege Liege-Sart TilmanLiegeBelgium

Personalised recommendations