Advertisement

Endocrine

, Volume 54, Issue 2, pp 543–551 | Cite as

Changes of serum sclerostin and Dickkopf-1 levels during the menstrual cycle. A pilot study

  • Chrysoula G. LiakouEmail author
  • George Mastorakos
  • Konstantinos Makris
  • Ioannis G. Fatouros
  • Alexandra Avloniti
  • Helen Marketos
  • Julia D. Antoniou
  • Antonios Galanos
  • Ismene Dontas
  • Demetrios Rizos
  • Symeon Tournis
Original Article

Abstract

Studies in postmenopausal women have identified sclerostin as a strong candidate for mediating estrogen effects on the skeleton. The effects of estradiol on sclerostin and Dickkopf-1 in younger women remain unclear. The main purpose of this study is to investigate the impact of estradiol and gonadotrophins fluctuations during the menstrual cycle on circulating sclerostin and Dickkopf-1 levels and the possible relationship of sclerostin and Dickkopf-1 with changes in N-terminal propeptide of type 1 collagen and C-telopeptide of collagen cross-links. Fourteen healthy premenopausal Caucasian women, with regular menses, aged 33.6 ± 4.5 years participated. After the first day of menstruation and every-other-day up to the next menses, fasting serum estradiol, luteinizing hormone, follicle-stimulating hormone, sclerostin, Dickkopf-1, N-terminal propeptide of type 1 collagen, and C-telopeptide of collagen cross-links levels were measured in peripheral blood. Participants completed dietary questionnaires and the International physical activity questionnaire during the cycle. Neither sclerostin nor Dickkopf-1 levels changed significantly across the menstrual cycle (p = 0.18 and p = 0.39, respectively), while N-terminal propeptide of type 1 collagen and C-telopeptide of collagen cross-links levels presented cyclic variation (p < 0.001 and p = 0.004, respectively). Baseline sclerostin (29.23 ± 10.62 pmol/L) positively correlated with N-terminal propeptide of type 1 collagen (r = 0.71, p < 0.01) and C-telopeptide of collagen cross-links (r = 0.63, p < 0.05), while Dickkopf-1 (4.82 ± 2.23 pmol/L) correlated positively with N-terminal propeptide of type 1 collagen (r = 0.56, p < 0.05). Mid-cycle E2 levels presented significant negative association with the percent decrease of C-telopeptide of collagen cross-links at all-time points during the luteal period (r = −0.60 to −0.68, p < 0.05–0.01). Circulating sclerostin and Dickkopf-1 levels do not change across the menstrual cycle and do not demonstrate any relationship with estradiol in premenopausal women. Further investigation is needed concerning the role of sclerostin and Dickkopf-1 on bone turnover in young estrogen-sufficient women.

Keywords

Sclerostin Dkk-1 Estradiol Bone turnover markers 

Abbreviations

BMD

bone mineral density

CTX

C-telopeptide of collagen cross-links

DeltaCTX

percent change of CTX

Dkk-1

Dickkopf-1

E2

estradiol

ERα

estrogen receptor-alpha

FEI

free estrogen index

FP

follicular phase

FSH

follicle-stimulating hormone

IPAQ

international physical activity questionnaire

LH

luteinizing hormone

LP

luteal phase

LRP

low density lipoprotein receptor-related protein

MET

metabolic equivalent of task

P1NP

N-terminal propeptide of type 1 collagen

PTH

parathyroid hormone

RANKL

receptor activator for nuclear factor-κB ligand

SHBG

sex hormone-binding globulin

TSH

thyroid-stimulating hormone

Notes

Author contribution

Design and conduct of the study: Chrysoula G. Liakou, Julia D. Antoniou, George Mastorakos, Symeon Tournis. Biochemical analysis of the samples: Konstantinos Makris, Helen Marketos, Chrysoula G. Liakou, Dimitrios Rizos. Physical activity and dietary assessment: Ioannis G. Fatouros, Alexandra Avloniti. Data collection and analysis: Antonios Galanos, Chrysoula G. Liakou, George Mastorakos, Ioannis G. Fatouros, Alexandra Avloniti, Symeon, Tournis. Data interpretation: Chrysoula G. Liakou, George Mastorakos, Ioannis G. Fatouros, Konstantinos Makris, Symeon Tournis. Manuscript writing: Chrysoula G. Liakou, George Mastorakos, Ioannis G. Fatouros, Konstantinos Makris, Ismene Dontas, Symeon Tournis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    K.E. Poole, R.L. van Bezooijen, N. Loveridge, H. Hamersma, S.E. Papapoulos, C.W. Lowik, J. Reeve, Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005)PubMedGoogle Scholar
  2. 2.
    R. Baron, G. Rawadi, S. Roman-Roman, Wnt signaling: a key regulator of bone mass. Curr. Top. Dev. Biol. 76, 103–127 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    R. Baron, G. Rawadi, Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148, 2635–2643 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    M.K. Sutherland, J.C. Geoghegan, C. Yu, E. Turcott, J.E. Skonier, D.G. Winkler, J.A. Latham, Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 35, 828–835 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    W. Balemans, M. Ebeling, N. Patel, E. Van Hul, P. Olson, M. Dioszegi, C. Lacza, W. Wuyts, J. Van Den Ende, P. Willems, A.F. Paes-Alves, S. Hill, M. Bueno, F.J. Ramos, P. Tacconi, F.G. Dikkers, C. Stratakis, K. Lindpaintner, B. Vickery, D. Foernzler, W. Van Hul, Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    W. Balemans, N. Patel, M. Ebeling, E. Van Hul, W. Wuyts, C. Lacza, M. Dioszegi, F.G. Dikkers, P. Hildering, P.J. Willems, J.B. Verheij, K. Lindpaintner, B. Vickery, D. Foernzler, W. Van Hul, Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    D.G. Winkler, M.K. Sutherland, J.C. Geoghegan, C. Yu, T. Hayes, J.E. Skonier, D. Shpektor, M. Jonas, B.R. Kovacevich, K. Staehling-Hampton, M. Appleby, M.E. Brunkow, J.A. Latham, Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris, C.H. Turner, Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    F. Morvan, K. Boulukos, P. Clement-Lacroix, S. Roman Roman, I. Suc-Royer, B. Vayssiere, P. Ammann, P. Martin, S. Pinho, P. Pognonec, P. Mollat, C. Niehrs, R. Baron, G. Rawadi, Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934–945 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Li, I. Sarosi, R.C. Cattley, J. Pretorius, F. Asuncion, M. Grisanti, S. Morony, S. Adamu, Z. Geng, W. Qiu, P. Kostenuik, D.L. Lacey, W.S. Simonet, B. Bolon, X. Qian, V. Shalhoub, M.S. Ominsky, H. Zhu Ke, X. Li, W.G. Richards, Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39, 754–766 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    F.S. Wang, J.Y. Ko, C.L. Lin, H.L. Wu, H.J. Ke, P.J. Tai, Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 40, 485–492 (2006)CrossRefPubMedGoogle Scholar
  12. 12.
    G. Zaman, L.K. Saxon, A. Sunters, H. Hilton, P. Underhill, D. Williams, J.S. Price, L.E. Lanyon, Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor alpha and disuse. Bone 46, 628–642 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    F.S. Mirza, I.D. Padhi, L.G. Raisz, J.A. Lorenzo, Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 1991–1997 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Y.E. Chung, S.H. Lee, S.Y. Lee, S.Y. Kim, H.H. Kim, F.S. Mirza, S.K. Lee, J.A. Lorenzo, G.S. Kim, J.M. Koh, Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos. Int. 23, 1235–1243 (2012)CrossRefPubMedGoogle Scholar
  15. 15.
    U.I. Mödder, J.A. Clowes, K. Hoey, J.M. Peterson, L. McCready, M.J. Oursler, B.L. Riggs, S. Khosla, Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Miner. Res. 26, 27–34 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    S. Rinaldi, A. Geay, H. Déchaud, C. Biessy, A. Zeleniuch-Jacquotte, A. Akhmedkhanov, R.E. Shore, E. Riboli, P. Toniolo, R. Kaaks, Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol. Biomarkers Prev. 11, 1065–1071 (2002)PubMedGoogle Scholar
  17. 17.
    S. Tournis, E. Michopoulou, I.G. Fatouros, I. Paspati, M. Michalopoulou, P. Raptou, D. Leontsini, A. Avloniti, M. Krekoukia, V. Zouvelou, A. Galanos, N. Aggelousis, A. Kambas, I. Douroudos, G.P. Lyritis, K. Taxildaris, N. Pappaioannou, Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J. Clin. Endocrinol. Metab. 95, 2755–2762 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Cidem, T.A. Usta, I. Karacan, S.H. Kucuk, M. Uludag, K. Gun, Effects of sex steroids on serum sclerostin levels during the menstrual cycle. Gynecol. Obstet. Invest. 75, 179–184 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    I. Gorai, Y. Taguchi, O. Chaki, R. Kikuchi, M. Nakayama, B.C. Yang, S. Yokota, H. Minaguchi, Serum soluble interleukin-6 receptor and biochemical markers of bone metabolism show significant variations during the menstrual cycle. J. Clin. Endocrinol. Metab. 83, 326–332 (1998)CrossRefPubMedGoogle Scholar
  20. 20.
    K.M. Chiu, J. Ju, D. Mayes, P. Bacchetti, S. Weitz, C.D. Arnaud, Changes in bone resorption during the menstrual cycle. J. Bone Miner. Res. 4, 609–615 (1999)CrossRefGoogle Scholar
  21. 21.
    H.K. Nielsen, K. Brixen, R. Bouillon, L. Mosekilde, Changes in biochemical markers of osteoblastic activity during the menstrual cycle. J. Clin. Endocrinol. Metab. 70, 1431–1437 (1990)CrossRefPubMedGoogle Scholar
  22. 22.
    I. Gorai, O. Chaki, M. Nakayama, H. Minaguchi, Urinary biochemical markers for bone resorption during the menstrual cycle. Calcif. Tissue Int. 57, 100–104 (1995)CrossRefPubMedGoogle Scholar
  23. 23.
    M.L. Gass, R. Kagan, J.D. Kohles, M.G. Martens, Bone turnover marker profile in relation to the menstrual cycle of premenopausal healthy women. Menopause 15, 667–675 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    B. Mozzanega, S. Gizzo, D. Bernardi, L. Salmaso, T.S. Patrelli, R. Mioni, L. Finos, G.B. Nardelli, Cyclic variations of bone resorption mediators and markers in the different phases of the menstrual cycle. J. Bone Miner. Metab. 31, 461–467 (2013)CrossRefPubMedGoogle Scholar
  25. 25.
    G. Lombardi, P. Lanteri, A. Colombini, G. Banfi, Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin. Chem. Lab. Med. 50, 771–789 (2012)CrossRefPubMedGoogle Scholar
  26. 26.
    G. Mabilleau, A. Mieczkowska, M.E. Edmonds, Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet. Med. 27, 925–932 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    M.S. Ardawi, H.A. Al-Kadi, A.A. Rouzi, M.H. Qari, Determinants of serum sclerostin in healthy pre- and postmenopausal women. J. Bone Miner. Res. 26, 2812–2822 (2011)CrossRefPubMedGoogle Scholar
  28. 28.
    U.I. Mödder, K.A. Hoey, S. Amin, L.K. McCready, S.J. Achenbach, B.L. Riggs, L.J. Melton III, S. Khosla, Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26, 373–379 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    K. Amrein, S. Amrein, C. Drexler, H.P. Dimai, H. Dobnig, K. Pfeifer, A. Tomaschitz, T.R. Pieber, A. Fahrleitner-Pammer, Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 97, 148–154 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    C. Durosier, A. van Lierop, S. Ferrari, T. Chevalley, S. Papapoulos, R. Rizzoli, Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J. Clin. Endocrinol. Metab. 98, 3873–3883 (2013)CrossRefPubMedGoogle Scholar
  31. 31.
    A.G. Costa, M.D. Walker, C.A. Zhang, S. Cremers, E. Dworakowski, D.J. McMahon, G. Liu, J.P. Bilezikian, Circulating sclerostin levels and markers of bone turnover in Chinese-American and white women. J. Clin. Endocrinol. Metab. 98, 4736–4743 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    B.L. Clarke, M.T. Drake, Clinical utility of serum sclerostin measurements. Bonekey Rep. 2, 361 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    G. Lombardi, P. Lanteri, A. Colombini, M. Mariotti, G. Banfi, Sclerostin concentrations in athletes: role of load and gender. J. Biol. Regul. Homeost. Agents. 26, 157–163 (2012)PubMedGoogle Scholar
  34. 34.
    Z.A. Zhong, H. Sun WChen, H. Zhang, N.E. Lane, W. Yao, Inactivation of the progesterone receptor in Mx1+ cells potentiates osteogenesis in calvaria but not in long bone. PLoS One 10, e0139490 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    J.H. Liu, K.N. Muse, The effects of progestins on bone density and bone metabolism in postmenopausal women: a randomized controlled trial. Am. J. Obstet. Gynecol. 192, 1316–1323 (2005)CrossRefPubMedGoogle Scholar
  36. 36.
    Z. Ikram, L. Dulipsingh, K.M. Prestwood, Lack of effect of short-term micronized progesterone on bone turnover in postmenopausal women. J. Womens Health Gend. Based Med. 7, 973–8 (1999)CrossRefGoogle Scholar
  37. 37.
    G. Azizi, A. Hansen, K.M. Prestwood, Effect of micronized progesterone on bone turnover in postmenopausal women on estrogen replacement therapy. Endocr. Res. 29, 133–140 (2003)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chrysoula G. Liakou
    • 1
    Email author
  • George Mastorakos
    • 2
  • Konstantinos Makris
    • 3
  • Ioannis G. Fatouros
    • 4
  • Alexandra Avloniti
    • 5
  • Helen Marketos
    • 3
  • Julia D. Antoniou
    • 1
  • Antonios Galanos
    • 1
  • Ismene Dontas
    • 1
  • Demetrios Rizos
    • 6
  • Symeon Tournis
    • 1
  1. 1.Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, Medical SchoolAthens UniversityKifissiaGreece
  2. 2.Unit of Endocrinology, Diabetes and Metabolism, Aretaieion Hospital, Athens Medical SchoolAthens UniversityAthensGreece
  3. 3.Department of BiochemistryKifissiaGreece
  4. 4.School of Physical Education and Sports SciencesUniversity of ThessalyTrikalaGreece
  5. 5.School of Physical Education and Sports SciencesDemocritus University of ThraceKomotiniGreece
  6. 6.Hormone Laboratory, Aretaieion Hospital, Medical SchoolAthens UniversityAthensGreece

Personalised recommendations