, Volume 55, Issue 2, pp 360–365 | Cite as

Cooling down inflammation in type 2 diabetes: how strong is the evidence for cardiometabolic benefit?

  • Maria Ida MaiorinoEmail author
  • Giuseppe Bellastella
  • Dario Giugliano
  • Katherine Esposito
Mini Review


Chronic inflammation is supposed to be an important mediator of cardiometabolic dysfunctions seen in type 2 diabetes. In this mini-review, we collected evidence (PubMed) from randomized controlled trials (through March 2016) evaluating the effect of anti-inflammatory drugs on indices of glycemic control and/or cardiovascular events in people with type 2 diabetes. Within the last 25 years, many anti-inflammatory drugs have been tested in type 2 diabetes, including hydroxychloroquine, anti-tumor necrosis factor therapies (etanercept and infliximab), salsalate, interleukin-1 antagonists (anakinra, canakinumab, gevokizumab, LY2189102), and CC-R2 antagonists. Despite being promising, the observed effects on HbA1c or glucose control remain rather modest in most clinical trials, especially with the new drugs. There are many trials underway with anti-inflammatory agents to see whether patients with cardiovascular diseases and/or type 2 diabetes may have clinical benefit from marked reductions in circulating inflammatory markers. Until now, a large trial with losmapimod (a p38 inhibitor) among patients with acute myocardial infarction, including one/third of diabetic patients, showed no reduction in the risk of major ischemic cardiovascular events. Further evidence is warranted in support of the concept that targeting inflammation pathways may ameliorate glycemic control and also reduce cardiovascular complications in type 2 diabetes.


Inflammation Type 2 diabetes Anti-inflammatory drugs Glycemic control Cardiovascular complications 


Compliance with ethical standards

Conflict of Interest

D. G. and K. E. received speaker fees from Lilly, SANOFI, and NOVARTIS.


  1. 1.
    G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)CrossRefPubMedGoogle Scholar
  2. 2.
    G.S. Hotamisligil, A. Budavari, D. Murray, B.M. Spiegelman, Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes: central role of tumor necrosis factor-alpha. J. Clin. Investig. 94, 1543–1549 (1994)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    P. Libby, Inflammation in atherosclerosis. Nature 420, 868–874 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Esposito, D. Giugliano, The metabolic syndrome and inflammation: association or causation? Nutr. Metab. Cardiovasc. Dis. 14, 228–232 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    C. Belizna, Hydroxychloroquine as an anti-thrombotic in antiphospholipid syndrome. Autoimmun. Rev. 14, 358–362 (2015)CrossRefPubMedGoogle Scholar
  6. 6.
    Y.C Kaplan, J. Ozsarfati, C. Nickel, G. Koren, Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. (2015 Dec 23). doi:  10.1111/bcp.12872. [Epub ahead of print]
  7. 7.
    A. Quatraro, G. Consoli, M. Magno et al., Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann. Intern. Med. 112, 678–681 (1990)CrossRefPubMedGoogle Scholar
  8. 8.
    H.C. Gerstein, K.E. Thorpe, D.W. Taylor, R.B. Haynes, The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial. Diabetes Res. Clin. Pract. 55, 209–219 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    A. Pareek, N. Chandurkar, N. Thomas et al., Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone. Curr. Med. Res. Opin. 30, 1257–1266 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    M.C. Wasko, H.B. Hubert, V.B. Lingala, J.R. Elliott, M.E. Luggen, J.F. Fries, M. Ward, Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 298, 187–193 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    T.S. Sharma, M.C. Wasko, X. Tang, D. Vedamurthy, X. Yan, J. Cote, A. Bili, Hydroxychloroquine use is associated with decreased incident cardiovascular events in rheumatoid arthritis patients. J. Am. Heart. Assoc. 4, 5 (2016)Google Scholar
  12. 12.
    M.A. Gonzalez-Gay, C. Gonzalez-Juanatey, T.R. Vazquez-Rodriguez et al., Insulin resistance in rheumatoid arthritis: the impact of the anti-TNF-alpha therapy. Ann. N. Y. Acad. Sci. 1193, 153–159 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    J. Channual, J.J. Wu, F.J. Dann, Effects of tumor necrosis factor-alpha blockade on metabolic syndrome components in psoriasis and psoriatic arthritis and additional lessons learned from rheumatoid arthritis. Dermatol. Ther. 22, 61–73 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    E. Parmentier-Decrucq, A. Duhamel, O. Ernst et al., Effects of infliximab therapy on abdominal fat and metabolic profile in patients with Crohn’s disease. Inflamm. Bowel Dis. 15, 1476–1484 (2009)CrossRefPubMedGoogle Scholar
  15. 15.
    F. Ofei, S. Hurel, J. Newkirk, M. Sopwith, R. Taylor, Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996)CrossRefPubMedGoogle Scholar
  16. 16.
    H. Dominguez, H. Storgaard, C. Rask-Madsen et al., Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    N. Esser, N. Paquot, A.J. Scheen, Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin. Investig. Drugs 24, 283–307 (2015)CrossRefPubMedGoogle Scholar
  18. 18.
    Q. Javed, I. Murtaza, Therapeutic potential of tumour necrosis factor-alpha antagonists in patients with chronic heart failure. Heart Lung Circ. 22, 323–327 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    J. Zhang, F. Xie, H. Yun, et al, Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. (2016 Jan 20). doi:  10.1136/annrheumdis-2015-207870. [Epub ahead of print]
  20. 20.
    S.E. Shoelson, J. Lee, A.B. Goldfine, Inflammation and insulin resistance. J. Clin. Investig. 116, 1793–1801 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    M.J. Yin, Y. Yamamoto, R.B. Gaynor, The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77–80 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    T.D. Gilmore, Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680–6684 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    A.B. Goldfine, V. Fonseca, K.A. Jablonski, L. Pyle, M.A. Staten, S.E. Shoelson, TINSAL-T2D (TargetingInflammation Using Salsalate in Type 2 Diabetes) Study Team. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A.B. Goldfine, V. Fonseca, K.A. Jablonski, Y.D. Chen, L. Tipton, M.A. Staten, S.E. Shoelson, Targeting inflammation using salsalate in type 2 diabetes study team. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A.B. Goldfine, J.S. Buck, C. Desouza et al., Targeting inflammation using salsalate in patients with type 2 diabetes: effects on flow-mediated dilation (TINSAL-FMD). Diabetes Care 36, 4132–4139 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    K. Maedler, P. Sergeev, F. Ris et al., Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Investig. 110, 851–860 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    C.M. Larsen, M. Faulenbach, A. Vaag, A. Vølund, J.A. Ehses, B. Seifert, T. Mandrup-Poulsen, M.Y. Donath, Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    C. Herder, E. Dalmas, M. Böni-Schnetzler, M.Y. Donath, The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol. Metab. 26, 551–563 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    H.J. Lachmann, I. Kone-Paut, J.B. Kuemmerle-Deschner, K.S. Leslie, E. Hachulla, P. Quartier, X. Gitton, A. Widmer, N. Patel, P.N. Hawkins, Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009)CrossRefPubMedGoogle Scholar
  30. 30.
    P.M. Ridker, C.P. Howard, V. Walter, on behalf of the CANTOS Pilot Investigative Group et al., Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen. A phase IIb randomized, placebo-controlled trial. Circulation 126, 2739–2748 (2012)CrossRefPubMedGoogle Scholar
  31. 31.
    C. Cavelti-Weder, A. Babians-Brunner, C. Keller, M.A. Stahel, M. Kurz-Levin, H. Zayed, A.M. Solinger, T. Mandrup-Poulsen, C.A. Dinarello, M.Y. Donath, Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35, 1654–1662 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    J. Sloan-Lancaster, E. Abu-Raddad, J. Polzer, J.W. Miller, J.C. Scherer, A. De Gaetano, J.K. Berg, W.H. Landschulz, Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36, 2239–2246 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    N.A. Di Prospero, E. Artis, P. Andrade-Gordon, D.L. Johnson, N. Vaccaro, L. Xi, P. Rothenberg, CCR2 antagonism in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Diabetes Obes. Metab. 16, 1055–1064 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    S. Kaptoge, E. Di Angelantonio, G. Lowe, M.B. Pepys, S.G. Thompson, R. Collins, J. Danesh, C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    P.M. Ridker, T. Thuren, A. Zalewski, P. Libby, Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597–605 (2011)CrossRefPubMedGoogle Scholar
  36. 36.
    P.M. Ridker, Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J. Thromb. Haemost. 7(Suppl 1), 332–339 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    P.M. Ridker, T.F. Lüscher, Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 35, 1782–1791 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    M.L. O’Donoghue, R. Glaser, M.A. Cavender, LATITUDE-TIMI 60 Investigators et al., Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 315, 1591–1599 (2016)CrossRefPubMedGoogle Scholar
  39. 39.
    L.K. Newby, M.S. Marber, C. Melloni et al., SOLSTICE investigators. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384, 1187–1195 (2014)CrossRefPubMedGoogle Scholar
  40. 40.
    M.Y. Donath, Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia 59, 679–682 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria Ida Maiorino
    • 1
    Email author
  • Giuseppe Bellastella
    • 1
  • Dario Giugliano
    • 1
  • Katherine Esposito
    • 2
  1. 1.Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Endocrinology and Metabolic Diseases UnitSecond University of NaplesNaplesItaly
  2. 2.Department of Clinical and Experimental MedicineSecond University of NaplesNaplesItaly

Personalised recommendations