Advertisement

Endocrine

, Volume 53, Issue 3, pp 823–830 | Cite as

Metabolic actions of insulin in ovarian granulosa cells were unaffected by hyperandrogenism

  • Shidou Zhao
  • Haijing Xu
  • Yuqian Cui
  • Wenting Wang
  • Yingying Qin
  • Li You
  • Wai-Yee Chan
  • Yun Sun
  • Zi-Jiang ChenEmail author
Original Article

Abstract

Polycystic ovary syndrome (PCOS) patients have intra-ovarian hyperandrogenism and granulosa cells (GCs) from PCOS patients have impaired insulin-dependent glucose metabolism and insulin resistance. The purpose of this study is to determine whether excess androgen affects glucose metabolism and induces insulin resistance of GCs. We firstly explored the insulin metabolic signaling pathway and glucose metabolism in cultured GCs. The Akt phosphorylation and lactate production were increased after insulin treatment. Pre-treatment with PI3-K inhibitor attenuated insulin-induced phosphorylation of Akt and lactate accumulation. However, after treating GCs with different concentrations of testosterone for 5 days, insulin-induced phosphorylation of Akt and lactate production showed no significant change comparing with those of control cells. Finally, mRNA expression of insulin signaling mediators including INSR, IRS-1, IRS-2, and GLUT-4 in GCs was also not significantly altered after testosterone treatment. In conclusion, insulin activates PI3-K/Akt signaling pathway and promotes lactate production in ovarian GCs, but high androgen exerted no obvious influence on insulin signaling pathway and metabolic effect in GCs, suggesting that metabolic actions of insulin in ovarian GCs were unaffected by hyperandrogenism directly.

Keywords

High androgen Granulosa cell Insulin resistance Polycystic ovary syndrome 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program, 2012CB944700); National Natural Science Foundation of China (81200419); Shandong Province Excellent Young and Middle-Aged Scientists Research Awards Fund (BS2013YY012); Key Program for Basic Research of the Science and Technology Commission of Shanghai Municipality, China (12JC1405800); China Postdoctoral Science Foundation Funded Project (2012M511522, 2013T60677); and Postdoctoral Innovation Foundation of Shandong Province (201203043). The authors thank all of their colleagues for technical support.

Compliance with ethical standards

Conflict of interest

All of the authors have no conflict of interest to declare.

Supplementary material

12020_2016_949_MOESM1_ESM.pdf (386 kb)
Supplementary material 1 (PDF 385 kb)

References

  1. 1.
    M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    R.S. Legro, S.A. Arslanian, D.A. Ehrmann, K.M. Hoeger, M.H. Murad, R. Pasquali, C.K. Welt, Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98(12), 4565–4592 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    Z.J. Chen, H. Zhao, L. He, Y. Shi, Y. Qin, Z. Li, L. You, J. Zhao, J. Liu, X. Liang, X. Zhao, Y. Sun, B. Zhang, H. Jiang, D. Zhao, Y. Bian, X. Gao, L. Geng, Y. Li, D. Zhu, X. Sun, J.E. Xu, C. Hao, C.E. Ren, Y. Zhang, S. Chen, W. Zhang, A. Yang, J. Yan, J. Ma, Y. Zhao, Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43(1), 55–59 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    Y. Shi, H. Zhao, Y. Cao, D. Yang, Z. Li, B. Zhang, X. Liang, T. Li, J. Chen, J. Shen, J. Zhao, L. You, X. Gao, D. Zhu, X. Zhao, Y. Yan, Y. Qin, W. Li, J. Yan, Q. Wang, L. Geng, J. Ma, Y. Zhao, G. He, A. Zhang, S. Zou, A. Yang, J. Liu, B. Li, C. Wan, J. Shi, J. Yang, H. Jiang, J.E. Xu, X. Qi, Y. Sun, Y. Zhang, C. Hao, X. Ju, D. Zhao, C.E. Ren, X. Li, W. Zhang, J. Zhang, D. Wu, C. Zhang, L. He, Z.J. Chen, Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44(9), 1020–1025 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    S. Jonard, D. Dewailly, The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 10(2), 107–117 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    K.A. Walters, C.M. Allan, D.J. Handelsman, Rodent models for human polycystic ovary syndrome. Biol. Reprod. 86(5), 149, 1–12 (2012)CrossRefPubMedGoogle Scholar
  7. 7.
    C.M. DeUgarte, A.A. Bartolucci, R. Azziz, Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83(5), 1454–1460 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    R. Mathur, C.J. Alexander, J. Yano, B. Trivax, R. Azziz, Use of metformin in polycystic ovary syndrome. Am. J. Obstet. Gynecol. 199(6), 596–609 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    E. Diamanti-Kandarakis, A. Dunaif, Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33(6), 981–1030 (2012)CrossRefPubMedGoogle Scholar
  10. 10.
    L. Poretsky, N.A. Cataldo, Z. Rosenwaks, L.C. Giudice, The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20(4), 535–582 (1999)CrossRefPubMedGoogle Scholar
  11. 11.
    Y. Lin, M. Fridstrom, T. Hillensjo, Insulin stimulation of lactate accumulation in isolated human granulosa-luteal cells: a comparison between normal and polycystic ovaries. Hum. Reprod. 12(11), 2469–2472 (1997)CrossRefPubMedGoogle Scholar
  12. 12.
    P. Fedorcsak, R. Storeng, P.O. Dale, T. Tanbo, T. Abyholm, Impaired insulin action on granulosa-lutein cells in women with polycystic ovary syndrome and insulin resistance. Gynecol. Endocrinol. 14(5), 327–336 (2000)CrossRefPubMedGoogle Scholar
  13. 13.
    X.K. Wu, S.Y. Zhou, J.X. Liu, P. Pollanen, K. Sallinen, M. Makinen, R. Erkkola, Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil. Steril. 80(4), 954–965 (2003)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Rice, N. Christoforidis, C. Gadd, D. Nikolaou, L. Seyani, A. Donaldson, R. Margara, K. Hardy, S. Franks, Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum. Reprod. 20(2), 373–381 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    M.C. Richardson, S. Ingamells, C.D. Simonis, I.T. Cameron, R. Sreekumar, A. Vijendren, L. Sellahewa, S. Coakley, C.D. Byrne, Stimulation of lactate production in human granulosa cells by metformin and potential involvement of adenosine 5′ monophosphate-activated protein kinase. J. Clin. Endocrinol. Metab. 94(2), 670–677 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    J.M. Pauli, N. Raja-Khan, X. Wu, R.S. Legro, Current perspectives of insulin resistance and polycystic ovary syndrome. Diabet. Med. 28(12), 1445–1454 (2011)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Dunaif, Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18(6), 774–800 (1997)PubMedGoogle Scholar
  18. 18.
    D.A. Dumesic, D.H. Abbott, V. Padmanabhan, Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord. 8(2), 127–141 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    A. Corbould, Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J. Endocrinol. 192(3), 585–594 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    M.C. Allemand, B.A. Irving, Y.W. Asmann, K.A. Klaus, L. Tatpati, C.C. Coddington, K.S. Nair, Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes—a potential model for PCOS-related insulin resistance. PLoS One 4(1), e4274 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    L. Zhang, Q. Liao, Effects of testosterone and metformin on glucose metabolism in endometrium. Fertil. Steril. 93(7), 2295–2298 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    P. Ormazabal, C. Romero, A.F. Quest, M. Vega, Testosterone modulates the expression of molecules linked to insulin action and glucose uptake in endometrial cells. Horm. Metab. Res. 45(9), 640–645 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    C.P. Zhang, J.L. Yang, J. Zhang, L. Li, L. Huang, S.Y. Ji, Z.Y. Hu, F. Gao, Y.X. Liu, Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152(6), 2437–2447 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25(4), 402–408 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    E. Diamanti-Kandarakis, A.G. Papavassiliou, Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol. Med. 12(7), 324–332 (2006)CrossRefPubMedGoogle Scholar
  26. 26.
    C.M. Taniguchi, B. Emanuelli, C.R. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7(2), 85–96 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    J.W. Kornfeld, C. Baitzel, A.C. Konner, H.T. Nicholls, M.C. Vogt, K. Herrmanns, L. Scheja, C. Haumaitre, A.M. Wolf, U. Knippschild, J. Seibler, S. Cereghini, J. Heeren, M. Stoffel, J.C. Bruning, Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494(7435), 111–115 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Rice, L.J. Pellatt, S.J. Bryan, S.A. Whitehead, H.D. Mason, Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. J. Clin. Endocrinol. Metab. 96(3), E427–E435 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    K. Hojlund, D. Glintborg, N.R. Andersen, J.B. Birk, J.T. Treebak, C. Frosig, H. Beck-Nielsen, J.F. Wojtaszewski, Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes 57(2), 357–366 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    P. Cetica, L. Pintos, G. Dalvit, M. Beconi, Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124(5), 675–681 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    K. Vendola, J. Zhou, J. Wang, C.A. Bondy, Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum. Reprod. 14(9), 2328–2332 (1999)CrossRefPubMedGoogle Scholar
  32. 32.
    A. Virkamaki, K. Ueki, C.R. Kahn, Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 103(7), 931–943 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    D.J. Burks, J. Font de Mora, M. Schubert, D.J. Withers, M.G. Myers, H.H. Towery, S.L. Altamuro, C.L. Flint, M.F. White, IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407(6802), 377–382 (2000)CrossRefPubMedGoogle Scholar
  34. 34.
    I. Neganova, H. Al-Qassab, H. Heffron, C. Selman, A.I. Choudhury, S.J. Lingard, I. Diakonov, M. Patterson, M. Ghatei, S.R. Bloom, S. Franks, I. Huhtaniemi, K. Hardy, D.J. Withers, Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol. Reprod. 76(6), 1045–1053 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    R.L. Robker, L.K. Akison, B.D. Bennett, P.N. Thrupp, L.R. Chura, D.L. Russell, M. Lane, R.J. Norman, Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J. Clin. Endocrinol. Metab. 94(5), 1533–1540 (2009)CrossRefPubMedGoogle Scholar
  36. 36.
    Y.H. Chen, S. Heneidi, J.M. Lee, L.C. Layman, D.W. Stepp, G.M. Gamboa, B.S. Chen, G. Chazenbalk, R. Azziz, miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7), 2278–2286 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    R. Mioni, S. Chiarelli, N. Xamin, L. Zuliani, M. Granzotto, B. Mozzanega, P. Maffei, C. Martini, S. Blandamura, N. Sicolo, R. Vettor, Evidence for the presence of glucose transporter 4 in the endometrium and its regulation in polycystic ovary syndrome patients. J. Clin. Endocrinol. Metab. 89(8), 4089–4096 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    F. Qu, F.F. Wang, X.E. Lu, M.Y. Dong, J.Z. Sheng, P.P. Lv, G.L. Ding, B.W. Shi, D. Zhang, H.F. Huang, Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum. Reprod. 25(6), 1441–1450 (2010)CrossRefPubMedGoogle Scholar
  39. 39.
    F. Qu, F.F. Wang, R. Yin, G.L. Ding, M. El-Prince, Q. Gao, B.W. Shi, H.H. Pan, Y.T. Huang, M. Jin, P.C. Leung, J.Z. Sheng, H.F. Huang, A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J. Mol. Med. (Berl) 90(8), 911–923 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Sen, H. Prizant, A. Light, A. Biswas, E. Hayes, H.J. Lee, D. Barad, N. Gleicher, S.R. Hammes, Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc. Natl. Acad. Sci. USA 111(8), 3008–3013 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shidou Zhao
    • 1
    • 2
  • Haijing Xu
    • 3
  • Yuqian Cui
    • 1
  • Wenting Wang
    • 1
  • Yingying Qin
    • 1
  • Li You
    • 1
  • Wai-Yee Chan
    • 2
  • Yun Sun
    • 3
  • Zi-Jiang Chen
    • 1
    • 3
    Email author
  1. 1.Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of EducationShandong Provincial Key Laboratory of Reproductive MedicineJinanPeople’s Republic of China
  2. 2.The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical SciencesThe Chinese University of Hong KongShatinChina
  3. 3.Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations