Endocrine

, Volume 53, Issue 2, pp 364–372 | Cite as

SGLT2 inhibitors in the management of type 2 diabetes

Review

Abstract

The glucose-lowering pharmacopeia continues to grow for patients with type 2 diabetes. The latest drug category, the SGLT2 inhibitors reduce glycated hemoglobin concentrations by increasing urinary excretion of glucose. They are used mainly in combination with metformin and other antihyperglycemic agents, including insulin. Their glucose-lowering potency is modest. Advantages include lack of hypoglycemia as a side effect, and mild reduction in blood pressure and body weight. Side effects include increased urinary frequency, owing to their mild diuretic action, symptoms of hypovolemia, genitourinary infections. There are also recent reports of rare cases of diabetic ketoacidosis occurring in insulin-treated patients. Recently, a large cardiovascular outcome trial reported that a specific SGLT2 inhibitor, empagliflozin, led to a reduction in the primary endpoint of major cardiovascular events. This effect was mainly the result of a surprising 38 % reduction in cardiovascular death, and the drug was also associated with nearly as large a reduction in heart failure hospitalization. These findings were notable because most drugs used in type 2 diabetes have not been shown to improve cardiovascular outcomes. Accordingly, there is growing interest in empagliflozin and the entire SGLT2 inhibitor class as drugs that could potentially change the manner in which we approach the management of hyperglycemia in patients with type 2 diabetes.

Keywords

SGLT2 inhibitors Type 2 diabetes mellitus Antihyperglycemic therapy 

References

  1. 1.
    J.R. Ehrenkranz, N.G. Lewis, C.R. Kahn, J. Roth, Phlorizin: a review. Diabetes Metab. Res. Rev. 21(1), 31–38 (2005). doi:10.1002/dmrr.532 PubMedCrossRefGoogle Scholar
  2. 2.
    A.C. Guyton, J. Hall, Urine formation and the kidneys. Textbook of Medical Physiology, 9th edn. (WB Saunders, Philadelphia, 1996), pp. 332–335Google Scholar
  3. 3.
    R.D. Lawrence, Renal threshold for glucose: normal and in diabetics. Br. Med. J. 1(4140), 766–768 (1940)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    R. DeFronzo, J. Davidson, S. Del Prato, The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 14(1), 5–14 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    G. You, W.S. Lee, E.J. Barros, Y. Kanai, T.L. Huo, S. Khawaja, R.G. Wells, S.K. Nigam, M.A. Hediger, Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J. Biol. Chem. 270(49), 29365–29371 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    G.L. Bakris, V.A. Fonseca, K. Sharma, E.M. Wright, Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 75(12), 1272–1277 (2009)PubMedCrossRefGoogle Scholar
  7. 7.
    R. Santer, J. Calado, Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 5(1), 133–141 (2010). doi:10.2215/CJN.04010609 PubMedCrossRefGoogle Scholar
  8. 8.
    J. Calado, J. Loeffler, O. Sakallioglu, F. Gok, K. Lhotta, J. Barata, J. Rueff, Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int. 69(5), 852–855 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    E. Ottosson-Laakso, T. Tuomi, B. Forsén, M. Gullström, P.-H. Groop, L. Groop, P. Vikman, Influence of familial renal glycosuria due to mutations in the SLC5A2 gene on changes in glucose tolerance over time. PLoS ONE 11(1), e0146114 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    A.T. Sands, B.P. Zambrowicz, J. Rosenstock, P. Lapuerta, B.W. Bode, S.K. Garg, J.B. Buse, P. Banks, R. Heptulla, M. Rendell, Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38(7), 1181–1188 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    E. Ferrannini, S.J. Ramos, A. Salsali, W. Tang, J.F. List, Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33(10), 2217–2224 (2010). doi:10.2337/dc10-0612 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    N. Inagaki, K. Kondo, T. Yoshinari, N. Maruyama, Y. Susuta, H. Kuki, Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes. Metab. 15(12), 1136–1145 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    K. Stenlof, W.T. Cefalu, K.A. Kim, M. Alba, K. Usiskin, C. Tong, W. Canovatchel, G. Meininger, Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes. Metab. 15(4), 372–382 (2013). doi:10.1111/dom.12054 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    J. Rosenstock, M. Vico, L. Wei, A. Salsali, J.F. List, Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 35(7), 1473–1478 (2012). doi:10.2337/dc11-1693 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    J. Rosenstock, N. Aggarwal, D. Polidori, Y. Zhao, D. Arbit, K. Usiskin, G. Capuano, W. Canovatchel, Canagliflozin DIA 2001 Study Group, Dose-ranging effects of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35(6), 1232–1238 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    C.J. Bailey, J.L. Gross, D. Hennicken, N. Iqbal, T.A. Mansfield, J.F. List, Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 11, 43 (2013). doi:10.1186/1741-7015-11-43 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    J.P. Wilding, G. Charpentier, P. Hollander, G. Gonzalez-Galvez, C. Mathieu, F. Vercruysse, K. Usiskin, G. Law, S. Black, W. Canovatchel, G. Meininger, Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int. J. Clin. Pract. 67(12), 1267–1282 (2013). doi:10.1111/ijcp.12322 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    J. Bolinder, Ö. Ljunggren, L. Johansson, J. Wilding, A. Langkilde, C. Sjöström, J. Sugg, S. Parikh, Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab. 16(2), 159–169 (2014)PubMedCrossRefGoogle Scholar
  19. 19.
    J.P. Wilding, V. Woo, K. Rohwedder, J. Sugg, S. Parikh, Dapagliflozin 006 Study Group, Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes. Metab. 16(2), 124–136 (2014). doi:10.1111/dom.12187 PubMedCrossRefGoogle Scholar
  20. 20.
    E. Ferrannini, A. Berk, S. Hantel, S. Pinnetti, T. Hach, H.J. Woerle, U.C. Broedl, Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care 36(12), 4015–4021 (2013). doi:10.2337/dc13-0663 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    M. Ridderstråle, K.R. Andersen, C. Zeller, G. Kim, H.J. Woerle, U.C. Broedl, EMPA-REG H2H-SU trial investigators, Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2(9), 691–700 (2014)PubMedCrossRefGoogle Scholar
  22. 22.
    S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews, Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1), 140–149 (2015). doi:10.2337/dc14-2441 PubMedCrossRefGoogle Scholar
  23. 23.
    T. Kadowaki, M. Haneda, N. Inagaki, Y. Terauchi, A. Taniguchi, K. Koiwai, H. Rattunde, H.J. Woerle, U.C. Broedl, Empagliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, 12-week, double-blind, placebo-controlled, phase II trial. Adv. Ther. 31(6), 621–638 (2014). doi:10.1007/s12325-014-0126-8 PubMedCrossRefGoogle Scholar
  24. 24.
    J. Bolinder, O. Ljunggren, J. Kullberg, L. Johansson, J. Wilding, A.M. Langkilde, J. Sugg, S. Parikh, Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 97(3), 1020–1031 (2012). doi:10.1210/jc.2011-2260 PubMedCrossRefGoogle Scholar
  25. 25.
    G. Ferrannini, T. Hach, S. Crowe, A. Sanghvi, K.D. Hall, E. Ferrannini, Energy balance after sodium–glucose cotransporter 2 inhibition. Diabetes Care 38(9), 1730–1735 (2015). doi:10.2337/dc15-0355 PubMedCrossRefGoogle Scholar
  26. 26.
    D. Vasilakou, T. Karagiannis, E. Athanasiadou, M. Mainou, A. Liakos, E. Bekiari, M. Sarigianni, D.R. Matthews, A. Tsapas, Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159(4), 262–274 (2013). doi:10.7326/0003-4819-159-4-201308200-00007 PubMedCrossRefGoogle Scholar
  27. 27.
    R. Chilton, I. Tikkanen, C.P. Cannon, S. Crowe, T. Hach, H.J. Woerle, U.C. Broedl, O.E. Johansen, 4b.02: the sodium glucose cotransporter 2 inhibitor empagliflozin reduces blood pressure and markers of arterial stiffness and vascular resistance in type 2 diabetes. J. Hypertens. 33(Suppl 1), e53 (2015). doi:10.1097/01.hjh.0000467486.05191.41 Google Scholar
  28. 28.
    M.J. Davies, A. Trujillo, U. Vijapurkar, C.V. Damaraju, G. Meininger, Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 17(4), 426–429 (2015). doi:10.1111/dom.12439 PubMedCrossRefGoogle Scholar
  29. 29.
    E. Hardy, A. Ptaszynska, T. de Bruin, E. Johnsson, S. Parikh, J. List, Changes in lipid profiles of patients with type 2 diabetes mellitus on dapagliflozin therapy. in Diabetologia, (Springer 233 Spring st, New York, NY 10013 USA, 2013), pp. S379–S379Google Scholar
  30. 30.
    J.F. Yale, G. Bakris, B. Cariou, D. Yue, E. David-Neto, L. Xi, K. Figueroa, E. Wajs, K. Usiskin, G. Meininger, Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 15(5), 463–473 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    D.Z. Cherney, B.A. Perkins, N. Soleymanlou, M. Maione, V. Lai, A. Lee, N.M. Fagan, H.J. Woerle, O.E. Johansen, U.C. Broedl, M. von Eynatten, Renal hemodynamic effect of sodium–glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129(5), 587–597 (2014). doi:10.1161/CIRCULATIONAHA.113.005081 PubMedCrossRefGoogle Scholar
  32. 32.
    S.E. Inzucchi, B. Zinman, C. Wanner, R. Ferrari, D. Fitchett, S. Hantel, R.-M. Espadero, H.-J. Woerle, U.C. Broedl, O.E. Johansen, SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diabetes Vasc. Dis. Res. 12(2), 90–100 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Inagaki, K. Kondo, T. Yoshinari, H. Kuki, Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: a 52-week open-label study. J. Diabetes Investig. 6(2), 210–218 (2015)PubMedCrossRefGoogle Scholar
  34. 34.
    H.J. Lambers Heerspink, D. de Zeeuw, L. Wie, B. Leslie, J. List, Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 15(9), 853–862 (2013). doi:10.1111/dom.12127 PubMedCrossRefGoogle Scholar
  35. 35.
    N. Erondu, M. Desai, K. Ways, G. Meininger, Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care 38(9), 1680–1686 (2015). doi:10.2337/dc15-1251 PubMedCrossRefGoogle Scholar
  36. 36.
    S.I. Taylor, J.E. Blau, K.I. Rother, SGLT2 inhibitors may predispose to ketoacidosis. J. Clin. Endocrinol. Metab. 100(8), 2849–2852 (2015)PubMedCrossRefGoogle Scholar
  37. 37.
    S.I. Taylor, J.E. Blau, K.I. Rother, Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 3(1), 8–10 (2015). doi:10.1016/S2213-8587(14)70227-X PubMedCrossRefGoogle Scholar
  38. 38.
    B. Zinman, C. Wanner, J.M. Lachin, D. Fitchett, E. Bluhmki, S. Hantel, M. Mattheus, T. Devins, O.E. Johansen, H.J. Woerle, U.C. Broedl, S.E. Inzucchi, E.-R.O. Investigators, Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373(22), 2117–2128 (2015). doi:10.1056/NEJMoa1504720 PubMedCrossRefGoogle Scholar
  39. 39.
    J. McMurray, EMPA-REG-the “diuretic hypothesis”. J. Diabetes Complicat. 30(1), 3–4 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    R.A. DeFronzo, The EMPA-REG study: what has it told us? a diabetologist’s perspective. J. Diabetes Complicat. 30(1), 1–2 (2016). doi:10.1016/j.jdiacomp.2015.10.013 PubMedCrossRefGoogle Scholar
  41. 41.
    P.D. Home, S.J. Pocock, H. Beck-Nielsen, R. Gomis, M. Hanefeld, N.P. Jones, M. Komajda, J.J. McMurray, Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N. Engl. J. Med. 357(1), 28–38 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    S.E. Nissen, K. Wolski, Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356(24), 2457–2471 (2007). doi:10.1056/NEJMoa072761 PubMedCrossRefGoogle Scholar
  43. 43.
    A. Patel, ADVANCE Collaborative Group, S. MacMahon, J. Chalmers, B. Neal, M. Woodward, L. Billot, S. Harrap, N. Poulter, M. Marre, M. Cooper, P. Glasziou, D.E. Grobbee, P. Hamet, S. Heller, L.S. Liu, G. Mancia, C.E. Mogensen, C.Y. Pan, A. Rodgers, B. Williams, Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370(9590), 829–840 (2007). doi:10.1016/S0140-6736(07)61303-8 PubMedCrossRefGoogle Scholar
  44. 44.
    W. Duckworth, C. Abraira, T. Moritz, D. Reda, N. Emanuele, P.D. Reaven, F.J. Zieve, J. Marks, S.N. Davis, R. Hayward, S.R. Warren, S. Goldman, M. McCarren, M.E. Vitek, W.G. Henderson, G.D. Huang, VADT Investigators, Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360(2), 129–139 (2009). doi:10.1056/NEJMoa0808431 PubMedCrossRefGoogle Scholar
  45. 45.
    R. Pop-Busui, G.W. Evans, H.C. Gerstein, V. Fonseca, J.L. Fleg, B.J. Hoogwerf, S. Genuth, R.H. Grimm, M.A. Corson, R. Prineas, Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 33(7), 1578–1584 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    O.T. Investigators, H.C. Gerstein, J. Bosch, G.R. Dagenais, R. Diaz, H. Jung, A.P. Maggioni, J. Pogue, J. Probstfield, A. Ramachandran, M.C. Riddle, L.E. Ryden, S. Yusuf, Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367(4), 319–328 (2012). doi:10.1056/NEJMoa1203858 CrossRefGoogle Scholar
  47. 47.
    W.B. White, C.P. Cannon, S.R. Heller, S.E. Nissen, R.M. Bergenstal, G.L. Bakris, A.T. Perez, P.R. Fleck, C.R. Mehta, S. Kupfer, C. Wilson, W.C. Cushman, F. Zannad, EXAMINE Investigators, Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369(14), 1327–1335 (2013). doi:10.1056/NEJMoa1305889 PubMedCrossRefGoogle Scholar
  48. 48.
    R. Bentley-Lewis, D. Aguilar, M.C. Riddle, B. Claggett, R. Diaz, K. Dickstein, H.C. Gerstein, P. Johnston, L.V. Kober, F. Lawson, E.F. Lewis, A.P. Maggioni, J.J. McMurray, L. Ping, J.L. Probstfield, S.D. Solomon, J.C. Tardif, Y. Wu, M.A. Pfeffer, EXAMINE Investigators, Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am. Heart J. 169(5), 631–638 (2015). doi:10.1016/j.ahj.2015.02.002 PubMedCrossRefGoogle Scholar
  49. 49.
    J.B. Green, M.A. Bethel, P.W. Armstrong, J.B. Buse, S.S. Engel, J. Garg, R. Josse, K.D. Kaufman, J. Koglin, S. Korn, J.M. Lachin, D.K. McGuire, M.J. Pencina, E. Standl, P.P. Stein, S. Suryawanshi, F. Van de Werf, E.D. Peterson, R.R. Holman, TECOS Study Group, Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373(3), 232–242 (2015). doi:10.1056/NEJMoa1501352 PubMedCrossRefGoogle Scholar
  50. 50.
    J.A. Dormandy, B. Charbonnel, D.J. Eckland, E. Erdmann, M. Massi-Benedetti, I.K. Moules, A.M. Skene, M.H. Tan, P.J. Lefebvre, G.D. Murray, E. Standl, R.G. Wilcox, L. Wilhelmsen, J. Betteridge, K. Birkeland, A. Golay, R.J. Heine, L. Koranyi, M. Laakso, M. Mokan, A. Norkus, V. Pirags, T. Podar, A. Scheen, W. Scherbaum, G. Schernthaner, O. Schmitz, J. Skrha, U. Smith, J. Taton, PROactive investigators, Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366(9493), 1279–1289 (2005). doi:10.1016/S0140-6736(05)67528-9 PubMedCrossRefGoogle Scholar
  51. 51.
    S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Update to a position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 58(3), 429–442 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MedicineGriffin HospitalDerbyUSA
  2. 2.Department of Medicine, Section of EndocrinologyYale School of MedicineNew HavenUSA

Personalised recommendations