Advertisement

Endocrine

, Volume 53, Issue 1, pp 28–34 | Cite as

Non-functioning pituitary adenomas: growth and aggressiveness

  • Kristin Astrid ØysteseEmail author
  • Johan Arild Evang
  • Jens Bollerslev
Mini Review

Abstract

Pituitary adenomas (PAs) are common, comprising approximately one third of all intracranial tumors. Non-functioning pituitary adenomas (NFPAs) are the most common PAs. Although usually benign, the NFPAs represent therapeutic challenges because of their location close to the optic chiasm and nerves, and the proximity to the pituitary gland. The therapeutic alternatives are surgery and radiation. To date there is no effective medical treatment. NFPAs are classified according to different modalities, but there are no reliable marker of aggressiveness to guide the clinician in monitoring the patient. More information on growth patterns with constituent biological markers are needed to tailor the care of this patient group. Studies characterizing the membrane receptors of NFPAs have shown promising results, which may give rise to the development of medical treatment.

Keywords

Non-functioning pituitary adenomas Pituitary adenomas Silent pituitary adenomas Growth kinetics Prognosis Aggressiveness 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The patient case is given with permission from the patient.

References

  1. 1.
    E.D. Aflorei, M. Korbonits, Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol. 117(3), 379–394 (2014). doi: 10.1007/s11060-013-1354-5 CrossRefPubMedGoogle Scholar
  2. 2.
    G. Vargas, B. Gonzalez, C. Ramirez, A. Ferreira, E. Espinosa, V. Mendoza, G. Guinto, B. Lopez-Felix, E. Zepeda, M. Mercado, Clinical characteristics and treatment outcome of 485 patients with nonfunctioning pituitary macroadenomas. Int. J. Endocrinol. 2015, 756069 (2015). doi: 10.1155/2015/756069 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    O. Cooper, S. Melmed, Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best practice & research. Clinical. Endocrinol. Metab 26(4), 447–460 (2012). doi: 10.1016/j.beem.2012.01.002 Google Scholar
  4. 4.
    G. Carosi, E. Malchiodi, E. Ferrante, E. Sala, E. Verrua, E. Profka, C. Giavoli, M. Filopanti, P. Beck-Peccoz, A. Spada, G. Mantovani, Hypothalamic-pituitary axis in non-functioning pituitary adenomas: focus on the prevalence of isolated central hypoadrenalism. Neuroendocrinology 102(4), 267–273 (2015). doi: 10.1159/000430815 CrossRefPubMedGoogle Scholar
  5. 5.
    O. Vierimaa, M. Georgitsi, R. Lehtonen, P. Vahteristo, A. Kokko, A. Raitila, K. Tuppurainen, T.M. Ebeling, P.I. Salmela, R. Paschke, S. Gundogdu, E. De Menis, M.J. Makinen, V. Launonen, A. Karhu, L.A. Aaltonen, Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312(5777), 1228–1230 (2006). doi: 10.1126/science.1126100 CrossRefPubMedGoogle Scholar
  6. 6.
    C. Esteves, C. Neves, L. Augusto, J. Menezes, J. Pereira, I. Bernardes, J. Fonseca, D. Carvalho, Pituitary incidentalomas: analysis of a neuroradiological cohort. Pituitary 18(6), 777–781 (2015). doi: 10.1007/s11102-015-0652-7 CrossRefPubMedGoogle Scholar
  7. 7.
    T.T. Agustsson, T. Baldvinsdottir, J.G. Jonasson, E. Olafsdottir, V. Steinthorsdottir, G. Sigurdsson, A.V. Thorsson, P.V. Carroll, M. Korbonits, R. Benediktsson, The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur. J. Endocrinol. 173(5), 655–664 (2015). doi: 10.1530/eje-15-0189 CrossRefPubMedGoogle Scholar
  8. 8.
    A. Tjornstrand, K. Gunnarsson, M. Evert, E. Holmberg, O. Ragnarsson, T. Rosen, Filipsson Nystrom, H.: the incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur. J. Endocrinol. 171(4), 519–526 (2014). doi: 10.1530/eje-14-0144 CrossRefPubMedGoogle Scholar
  9. 9.
    A. Fernandez, N. Karavitaki, J.A. Wass, Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. (Oxf) 72(3), 377–382 (2010). doi: 10.1111/j.1365-2265.2009.03667.x CrossRefGoogle Scholar
  10. 10.
    A.F. Daly, M. Rixhon, C. Adam, A. Dempegioti, M.A. Tichomirowa, A. Beckers, High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 91(12), 4769–4775 (2006). doi: 10.1210/jc.2006-1668 CrossRefPubMedGoogle Scholar
  11. 11.
    A. Di Ieva, F. Rotondo, L.V. Syro, M.D. Cusimano, K. Kovacs, Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat. Rev. Endocrinol. 10(7), 423–435 (2014). doi: 10.1038/nrendo.2014.64 CrossRefPubMedGoogle Scholar
  12. 12.
    S.E. Mayson, P.J. Snyder, Silent pituitary adenomas. Endocrinol. Metab. Clin. North Am. 44(1), 79–87 (2015). doi: 10.1016/j.ecl.2014.11.001 CrossRefPubMedGoogle Scholar
  13. 13.
    H. Nishioka, N. Inoshita, O. Mete, S.L. Asa, K. Hayashi, A. Takeshita, N. Fukuhara, M. Yamaguchi-Okada, Y. Takeuchi, S. Yamada, The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr. Pathol. 26(4), 349–355 (2015). doi: 10.1007/s12022-015-9398-z CrossRefPubMedGoogle Scholar
  14. 14.
    R. DeLellis, P. Heitz, World Health Organization Classification of Tumours: Tumours of Endocrine Organs. IARC PRess, Lyon (2004)Google Scholar
  15. 15.
    C. Ramirez, S. Cheng, G. Vargas, S.L. Asa, S. Ezzat, B. Gonzalez, L. Cabrera, G. Guinto, M. Mercado, Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J. Clin. Endocrinol. Metab. 97(5), 1745–1751 (2012). doi: 10.1210/jc.2011-3163 CrossRefPubMedGoogle Scholar
  16. 16.
    A. Righi, P. Agati, A. Sisto, G. Frank, M. Faustini-Fustini, R. Agati, D. Mazzatenta, A. Farnedi, F. Menetti, G. Marucci, M.P. Foschini, A classification tree approach for pituitary adenomas. Hum. Pathol. 43(10), 1627–1637 (2012). doi: 10.1016/j.humpath.2011.12.003 CrossRefPubMedGoogle Scholar
  17. 17.
    J. Trouillas, P. Roy, N. Sturm, E. Dantony, C. Cortet-Rudelli, G. Viennet, J.F. Bonneville, R. Assaker, C. Auger, T. Brue, A. Cornelius, H. Dufour, E. Jouanneau, P. Francois, F. Galland, F. Mougel, F. Chapuis, L. Villeneuve, C.A. Maurage, D. Figarella-Branger, G. Raverot, A. Barlier, M. Bernier, F. Bonnet, F. Borson-Chazot, G. Brassier, S. Caulet-Maugendre, O. Chabre, P. Chanson, J.F. Cottier, B. Delemer, E. Delgrange, L. Di Tommaso, S. Eimer, S. Gaillard, M. Jan, J.J. Girard, V. Lapras, H. Loiseau, J.G. Passagia, M. Patey, A. Penfornis, J.Y. Poirier, G. Perrin, A. Tabarin, A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol. 126(1), 123–135 (2013). doi: 10.1007/s00401-013-1084-y CrossRefPubMedGoogle Scholar
  18. 18.
    M. Guarino, B. Rubino, G. Ballabio, The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39(3), 305–318 (2007). doi: 10.1080/00313020701329914 CrossRefPubMedGoogle Scholar
  19. 19.
    S.L. Fougner, T. Lekva, O.C. Borota, J.K. Hald, J. Bollerslev, J.P. Berg, The expression of E-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J. Clin. Endocrinol. Metab. 95(5), 2334–2342 (2010). doi: 10.1210/jc.2009-2197 CrossRefPubMedGoogle Scholar
  20. 20.
    T. Lekva, J.P. Berg, S.L. Fougner, O.K. Olstad, T. Ueland, J. Bollerslev, Gene expression profiling identifies ESRP1 as a potential regulator of epithelial mesenchymal transition in somatotroph adenomas from a large cohort of patients with acromegaly. J. Clin. Endocrinol. Metab. 97(8), E1506–E1514 (2012). doi: 10.1210/jc.2012-1760 CrossRefPubMedGoogle Scholar
  21. 21.
    J.A. Evang, J.P. Berg, O. Casar-Borota, T. Lekva, M.K. Kringen, J. Ramm-Pettersen, J. Bollerslev, Reduced levels of E-cadherin correlate with progression of corticotroph pituitary tumours. Clin. Endocrinol. (Oxf) 75(6), 811–818 (2011). doi: 10.1111/j.1365-2265.2011.04109.x CrossRefGoogle Scholar
  22. 22.
    H. Halvorsen, J. Ramm-Pettersen, R. Josefsen, P. Ronning, S. Reinlie, T. Meling, J. Berg-Johnsen, J. Bollerslev, E. Helseth, Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir. (Wien) 156(3), 441–449 (2014). doi: 10.1007/s00701-013-1959-7 CrossRefGoogle Scholar
  23. 23.
    J. Honegger, U. Ernemann, T. Psaras, B. Will, Objective criteria for successful transsphenoidal removal of suprasellar nonfunctioning pituitary adenomas. A prospective study. Acta Neurochir. 149(1), 21–29 (2007). doi: 10.1007/s00701-006-1044-6 CrossRefPubMedGoogle Scholar
  24. 24.
    R. Reddy, S. Cudlip, J.V. Byrne, N. Karavitaki, J.A. Wass, Can we ever stop imaging in surgically treated and radiotherapy-naive patients with non-functioning pituitary adenoma? Eur. J. Endocrinol. 165(5), 739–744 (2011). doi: 10.1530/eje-11-0566 CrossRefPubMedGoogle Scholar
  25. 25.
    A. Colao, G. Cerbone, P. Cappabianca, D. Ferone, A. Alfieri, F. Di Salle, A. Faggiano, B. Merola, E. de Divitiis, G. Lombardi, Effect of surgery and radiotherapy on visual and endocrine function in nonfunctioning pituitary adenomas. J. Endocrinol. Invest. 21(5), 284–290 (1998). doi: 10.1007/bf03350330 CrossRefPubMedGoogle Scholar
  26. 26.
    D. Ding, C.P. Yen, R.M. Starke, C.C. Lee, J.P. Sheehan, Unyielding progress: recent advances in the treatment of central nervous system neoplasms with radiosurgery and radiation therapy. J. Neurooncol. 119(3), 513–529 (2014). doi: 10.1007/s11060-014-1501-7 CrossRefPubMedGoogle Scholar
  27. 27.
    G. Ntali, N. Karavitaki, Efficacy and complications of pituitary irradiation. Endocrinol. Metab. Clin. North Am. 44(1), 117–126 (2015). doi: 10.1016/j.ecl.2014.10.009 CrossRefPubMedGoogle Scholar
  28. 28.
    N.C. van Varsseveld, C.C. van Bunderen, D.H. Ubachs, A.A. Franken, H.P. Koppeschaar, A.J. van der Lely, M.L. Drent, Cerebrovascular events, secondary intracranial tumors, and mortality after radiotherapy for nonfunctioning pituitary adenomas: a subanalysis from the dutch national registry of growth hormone treatment in adults. J. Clin. Endocrinol. Metab. 100(3), 1104–1112 (2015). doi: 10.1210/jc.2014-3697 CrossRefPubMedGoogle Scholar
  29. 29.
    D. Ding, R.M. Starke, J.P. Sheehan, Treatment paradigms for pituitary adenomas: defining the roles of radiosurgery and radiation therapy. J. Neurooncol. 117(3), 445–457 (2014). doi: 10.1007/s11060-013-1262-8 CrossRefPubMedGoogle Scholar
  30. 30.
    E. Chatzellis, K.I. Alexandraki, I.I. Androulakis, G. Kaltsas, Aggressive pituitary tumors. Neuroendocrinology 101(2), 87–104 (2015). doi: 10.1159/000371806 CrossRefPubMedGoogle Scholar
  31. 31.
    S.E. Combs, K. Kessel, D. Habermehl, T. Haberer, O. Jakel, J. Debus, Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta Oncol. 52(7), 1504–1509 (2013). doi: 10.3109/0284186x.2013.818255 CrossRefPubMedGoogle Scholar
  32. 32.
    D.A. Wattson, S.K. Tanguturi, D.Y. Spiegel, A. Niemierko, B.M. Biller, L.B. Nachtigall, M.R. Bussiere, B. Swearingen, P.H. Chapman, J.S. Loeffler, H.A. Shih, Outcomes of proton therapy for patients with functional pituitary adenomas. Int. J. Radiat. Oncol. Biol. Phys. 90(3), 532–539 (2014). doi: 10.1016/j.ijrobp.2014.06.068 CrossRefPubMedGoogle Scholar
  33. 33.
    Vieira Neto, L. Wildemberg, L.E. Moraes, A.B. Colli, L.M. Kasuki, N.V. Marques, E.L. Gasparetto, M. Takiya, C.M. Gadelha, Dopamine receptor subtype 2 expression profile in nonfunctioning pituitary adenomas and in vivo response to cabergoline therapy. Clin. Endocrinol. (Oxf) 82(5), 739–746 (2015). doi: 10.1111/cen.12684 CrossRefGoogle Scholar
  34. 34.
    Y. Greenman, N. Stern, Optimal management of non-functioning pituitary adenomas. Endocrine 50(1), 51–55 (2015). doi: 10.1007/s12020-015-0685-8 CrossRefPubMedGoogle Scholar
  35. 35.
    St. Olavs Hospital; Norwegian University of Science Technology: Dopamine agonist treatment of non-functioning pituitary adenomas (NFPAs)—a randomized controlled trial. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US)Google Scholar
  36. 36.
    S.L. Fougner, O.C. Borota, J.P. Berg, J.K. Hald, J. Ramm-Pettersen, J. Bollerslev, The clinical response to somatostatin analogues in acromegaly correlates to the somatostatin receptor subtype 2a protein expression of the adenoma. Clin. Endocrinol. (Oxf) 68(3), 458–465 (2008). doi: 10.1111/j.1365-2265.2007.03065.x CrossRefGoogle Scholar
  37. 37.
    C. Bruns, I. Lewis, U. Briner, G. Meno-Tetang, G. Weckbecker, SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 146(5), 707–716 (2002)CrossRefPubMedGoogle Scholar
  38. 38.
    D. Iacovazzo, E. Carlsen, F. Lugli, S. Chiloiro, S. Piacentini, A. Bianchi, A. Giampietro, M. Mormando, A.J. Clear, F. Doglietto, C. Anile, G. Maira, L. Lauriola, G. Rindi, F. Roncaroli, A. Pontecorvi, M. Korbonits, L. De Marinis, Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur. J. Endocrinol. 174(2), 241–250 (2016). doi: 10.1530/eje-15-0832 CrossRefPubMedGoogle Scholar
  39. 39.
    H. Nishioka, K. Tamura, H. Iida, M. Kutsukake, A. Endo, Y. Ikeda, J. Haraoka, Co-expression of somatostatin receptor subtypes and estrogen receptor-alpha mRNAs by non-functioning pituitary adenomas in young patients. Mol. Cell. Endocrinol. 331(1), 73–78 (2011). doi: 10.1016/j.mce.2010.08.011 CrossRefPubMedGoogle Scholar
  40. 40.
    G.F. Taboada, R.M. Luque, W. Bastos, R.F. Guimaraes, J.B. Marcondes, L.M. Chimelli, R. Fontes, P.J. Mata, P.N. Filho, D.P. Carvalho, R.D. Kineman, M.R. Gadelha, Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur. J. Endocrinol. 156(1), 65–74 (2007). doi: 10.1530/eje.1.02313 CrossRefPubMedGoogle Scholar
  41. 41.
    Vieria Neto, L., Wildemberg, L.E., Colli, L.M., Kasuki, L., Marques, N.V., Moraes, A.B., Gasparetto, E.L., Takiya, C.M., Castro, M., Gadelha, M.R.: zAC1 and SSTR2 are downregulated in non-functioning pituitary adenomas but not in somatotropinomas. PLoS ONE 8(10), e77406 (2013). doi: 10.1371/journal.pone.0077406 CrossRefGoogle Scholar
  42. 42.
    M. Gasperi, L. Petrini, R. Pilosu, M. Nardi, A. Marcello, F. Mastio, L. Bartalena, E. Martino, Octreotide treatment does not affect the size of most non-functioning pituitary adenomas. J. Endocrinol. Invest. 16(7), 541–543 (1993). doi: 10.1007/bf03348901 CrossRefPubMedGoogle Scholar
  43. 43.
    A. Fusco, A. Giampietro, A. Bianchi, V. Cimino, F. Lugli, S. Piacentini, M. Lorusso, A. Tofani, G. Perotti, L. Lauriola, C. Anile, G. Maira, A. Pontecorvi, L. De Marinis, Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: results from a case-control study. Pituitary 15(4), 571–578 (2012). doi: 10.1007/s11102-011-0370-8 CrossRefPubMedGoogle Scholar
  44. 44.
    M. Lee, A. Lupp, N. Mendoza, N. Martin, R. Beschorner, J. Honegger, J. Schlegel, T. Shively, E. Pulz, S. Schulz, F. Roncaroli, N.S. Pellegata, SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocr. Relat. Cancer 22(1), 111–119 (2015). doi: 10.1530/erc-14-0472 CrossRefPubMedGoogle Scholar
  45. 45.
    Novartis, P., Novartis: Evaluate the Efficacy and Safety of Pasireotide LAR on the Treatment of Patients With Clinically Non-Functioning Pituitary Adenoma. In. Bethesda (MD): National Library of Medicine (US) (2016)Google Scholar
  46. 46.
    D. Bengtsson, H.D. Schroder, M. Andersen, D. Maiter, K. Berinder, Feldt Rasmussen, U., Rasmussen, A.K., Johannsson, G., Hoybye, C., van der Lely, A.J., Petersson, M., Ragnarsson, O., Burman, P.: long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J. Clin. Endocrinol. Metabo. 100(4), 1689–1698 (2015). doi: 10.1210/jc.2014-4350 CrossRefGoogle Scholar
  47. 47.
    G. Raverot, F. Castinetti, E. Jouanneau, I. Morange, D. Figarella-Branger, H. Dufour, J. Trouillas, T. Brue, Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin. Endocrinol. (Oxf) 76(6), 769–775 (2012). doi: 10.1111/j.1365-2265.2012.04381.x CrossRefGoogle Scholar
  48. 48.
    G. Raverot, P. Burman, A. McCormack, S. Petersenn, V. Popovic-Brkic, J. Trouillas, ESE Survey on Aggressive Pituitary Tumors. http://www.ese-hormones.org/professional/
  49. 49.
    Y. Chen, C.D. Wang, Z.P. Su, Y.X. Chen, L. Cai, Q.C. Zhuge, Z.B. Wu, Natural history of postoperative nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Neuroendocrinology 96(4), 333–342 (2012). doi: 10.1159/000339823 CrossRefPubMedGoogle Scholar
  50. 50.
    E. Monsalves, S. Larjani, B. Loyola Godoy, K. Juraschka, F. Carvalho, W. Kucharczyk, A. Kulkarni, O. Mete, F. Gentili, S. Ezzat, G. Zadeh, Growth patterns of pituitary adenomas and histopathological correlates. J. Clin. Endocrinol. Metab. 99(4), 1330–1338 (2014). doi: 10.1210/jc.2013-3054 CrossRefPubMedGoogle Scholar
  51. 51.
    C. Cortet-Rudelli, J.F. Bonneville, F. Borson-Chazot, L. Clavier, B. Coche Dequeant, R. Desailloud, D. Maiter, V. Rohmer, J.L. Sadoul, E. Sonnet, P. Toussaint, P. Chanson, Post-surgical management of non-functioning pituitary adenoma. Ann Endocrinol (Paris) 76(3), 228–238 (2015). doi: 10.1016/j.ando.2015.04.003 CrossRefGoogle Scholar
  52. 52.
    H.M. Kistka, R.A. Kasl, A. Nayeri, A.L. Utz, K.D. Weaver, L.B. Chambless, Imaging of resected nonfunctioning pituitary adenomas: the cost of surveillance. J. Neurol. Surg. 76(5), 344–350 (2015). doi: 10.1055/s-0035-1549307 CrossRefGoogle Scholar
  53. 53.
    P.U. Freda, A.M. Beckers, L. Katznelson, M.E. Molitch, V.M. Montori, K.D. Post, M.L. Vance, Pituitary incidentaloma: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 96(4), 894–904 (2011). doi: 10.1210/jc.2010-1048 CrossRefPubMedGoogle Scholar
  54. 54.
    G. Soto-Ares, C. Cortet-Rudelli, R. Assaker, A. Boulinguez, C. Dubest, D. Dewailly, J.P. Pruvo, MRI protocol technique in the optimal therapeutic strategy of non-functioning pituitary adenomas. Eur. J. Endocrinol. 146(2), 179–186 (2002)CrossRefPubMedGoogle Scholar
  55. 55.
    E.P. O’Sullivan, C. Woods, N. Glynn, L.A. Behan, R. Crowley, P. O’Kelly, D. Smith, C.J. Thompson, A. Agha, The natural history of surgically treated but radiotherapy-naive nonfunctioning pituitary adenomas. Clin. Endocrinol. (Oxf) 71(5), 709–714 (2009). doi: 10.1111/j.1365-2265.2009.03583.x CrossRefGoogle Scholar
  56. 56.
    N. Lenders, S. Ikeuchi, A.W. Russell, K.K. Ho, J.B. Prins, W.J. Inder, Longitudinal evaluation of the natural history of conservatively managed non-functioning pituitary adenomas. Clin. Endocrinol. (Oxf) (2015). doi: 10.1111/cen.12879 Google Scholar
  57. 57.
    Y. Greenman, G. Ouaknine, I. Veshchev, G. Reider II, Y. Segev, N. Stern, Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin. Endocrinol. (Oxf) 58(6), 763–769 (2003)CrossRefGoogle Scholar
  58. 58.
    M. Losa, P. Mortini, R. Barzaghi, P. Ribotto, M.R. Terreni, S.B. Marzoli, S. Pieralli, M. Giovanelli, Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J. Neurosurg. 108(3), 525–532 (2008). doi: 10.3171/jns/2008/108/3/0525 CrossRefPubMedGoogle Scholar
  59. 59.
    E.F. Chang, G. Zada, S. Kim, K.R. Lamborn, A. Quinones-Hinojosa, J.B. Tyrrell, C.B. Wilson, S. Kunwar, Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J. Neurosurg. 108(4), 736–745 (2008). doi: 10.3171/jns/2008/108/4/0736 CrossRefPubMedGoogle Scholar
  60. 60.
    F. Roelfsema, N.R. Biermasz, A.M. Pereira, Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary 15(1), 71–83 (2012). doi: 10.1007/s11102-011-0347-7 CrossRefPubMedGoogle Scholar
  61. 61.
    J. Honegger, S. Zimmermann, T. Psaras, M. Petrick, M. Mittelbronn, U. Ernemann, M. Reincke, K. Dietz, Growth modelling of non-functioning pituitary adenomas in patients referred for surgery. Eur. J. Endocrinol. 158(3), 287–294 (2008). doi: 10.1530/eje-07-0502 CrossRefPubMedGoogle Scholar
  62. 62.
    S. Yamada, K. Ohyama, M. Taguchi, A. Takeshita, K. Morita, K. Takano, T. Sano, A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61(3), 580–584 (2007). doi: 10.1227/01.neu.0000290906.53685.79 CrossRefPubMedGoogle Scholar
  63. 63.
    J.A. Balogun, E. Monsalves, K. Juraschka, K. Parvez, W. Kucharczyk, O. Mete, F. Gentili, G. Zadeh, Null cell adenomas of the pituitary gland: an institutional review of their clinical imaging and behavioral characteristics. Endocr. Pathol. 26(1), 63–70 (2015). doi: 10.1007/s12022-014-9347-2 CrossRefPubMedGoogle Scholar
  64. 64.
    S. Brochier, F. Galland, M. Kujas, F. Parker, S. Gaillard, C. Raftopoulos, J. Young, O. Alexopoulou, D. Maiter, P. Chanson, Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur. J. Endocrinol. 163(2), 193–200 (2010). doi: 10.1530/eje-10-0255 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kristin Astrid Øystese
    • 1
    • 2
    Email author
  • Johan Arild Evang
    • 1
    • 2
  • Jens Bollerslev
    • 1
    • 2
  1. 1.Department of Specialized EndocrinologyRikshospitalet, Oslo University HospitalOsloNorway
  2. 2.Faculty of MedicineUniversity of OsloOsloNorway

Personalised recommendations