Endocrine

, Volume 53, Issue 3, pp 761–773 | Cite as

Intensity-modulated radiation therapy use for the localized treatment of thyroid cancer: Nationwide practice patterns and outcomes

  • Paolo Goffredo
  • Timothy J. Robinson
  • Linda M. Youngwirth
  • Sanziana A. Roman
  • Julie A. Sosa
Original Article
  • 310 Downloads

Abstract

In the absence of randomized data, the optimal approach to adjuvant radiation therapy in locally advanced thyroid cancer remains unclear. We employed a large retrospective analysis to assess the best available evidence of a potential beneficial impact of intensity-modulated versus 3D-conformal radiotherapy (IMRT vs. 3D-CT). Retrospective analysis of adult thyroid cancer diagnosed between 2004 and 2011 within the National Cancer Database. Among patients treated with radiation therapy (N = 855), the use of IMRT (N = 437) increased among both comprehensive and academic centers (both p < 0.001), but not community hospitals (p = 0.43). Receipt of IMRT was associated with adverse clinical factors in multivariable analysis, including positive surgical margins, non-DTC histologies, and nodal metastases (all p < 0.001). IMRT use was associated with a significantly higher dose of radiation (60.7 vs. 52.4 Gy, p < 0.001). In multivariable analyses, receipt of IMRT demonstrated a trend toward improved overall survival (HR, 0.67; 95 % CI, 0.40–1.10; p = 0.115). This study presents the largest cohort to date examining receipt of IMRT in patients with locally advanced thyroid cancer and demonstrates an association between IMRT, treatment at a tertiary care center, higher total dose, and comparable or superior outcomes compared to patients treated with 3D conformal techniques despite more adverse disease features. In the absence of adequately powered prospective randomized trials, our retrospective analysis provides empirical evidence to support the use in these patients of dose escalation and IMRT, particularly at tertiary care centers.

Keywords

Thyroid cancer Radiation Survival IMRT 

References

  1. 1.
    Thyroid Cancer. (2015). Accessed 23 April 2015Google Scholar
  2. 2.
    E.K. Lee, Y.J. Lee, Y.S. Jung, J. Ryu, T.H. Kim, C.Y. Lee, C.H. Ryu, T.S. Kim, S.K. Kim, K.W. Chung, S.S. Kim, D.Y. Kim, J.Y. Kim, K.H. Cho, Postoperative simultaneous integrated boost-intensity modulated radiation therapy for patients with locoregionally advanced papillary thyroid carcinoma: preliminary results of a phase II trial and propensity score analysis. J. Clin. Endocrinol. Metab. 100(3), 1009–1017 (2015). doi:10.1210/jc.2014-3242 CrossRefPubMedGoogle Scholar
  3. 3.
    J.K. Salama, D.W. Golden, S.S. Yom, M.K. Garg, J. Lawson, M.W. McDonald, H. Quon, J.A. Ridge, N. Saba, R.V. Smith, F. Worden, A.R. Yeung, J.J. Beitler, ACR Appropriateness Criteria(R) thyroid carcinoma. Oral Oncol. 50(6), 577–586 (2014). doi:10.1016/j.oraloncology.2013.12.004 CrossRefPubMedGoogle Scholar
  4. 4.
    S.A. Wells Jr, S.L. Asa, H. Dralle, R. Elisei, D.B. Evans, R.F. Gagel, N.Y. Lee, A. Machens, J.F. Moley, F. Pacini, F. Raue, K. Frank-Raue, B. Robinson, M.S. Rosenthal, M. Santoro, M. Schlumberger, M.H.M. Shah, S.G. Waguespack, Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma: the American Thyroid Association Guidelines Task Force on medullary thyroid carcinoma. Thyroid (2015). doi:10.1089/thy.2014.0335 PubMedPubMedCentralGoogle Scholar
  5. 5.
    D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11), 1167–1214 (2009). doi:10.1089/thy.2009.0110 CrossRefPubMedGoogle Scholar
  6. 6.
    R.C. Smallridge, K.B. Ain, S.L. Asa, K.C. Bible, J.D. Brierley, K.D. Burman, E. Kebebew, N.Y. Lee, Y.E. Nikiforov, M.S. Rosenthal, M.H. Shah, A.R. Shaha, R.M. Tuttle, American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 22(11), 1104–1139 (2012). doi:10.1089/thy.2012.0302 CrossRefPubMedGoogle Scholar
  7. 7.
    NCCN Thyroid Carcinoma Guidelines. (2014). Accessed 27 August 2014Google Scholar
  8. 8.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1), 1–133 (2016). doi:10.1089/thy.2015.0020 CrossRefPubMedGoogle Scholar
  9. 9.
    N. Lee, D.R. Puri, A.I. Blanco, K.S. Chao, Intensity-modulated radiation therapy in head and neck cancers: an update. Head Neck 29(4), 387–400 (2007). doi:10.1002/hed.20332 CrossRefPubMedGoogle Scholar
  10. 10.
    N. Lee, P. Xia, N.J. Fischbein, P. Akazawa, C. Akazawa, J.M. Quivey, Intensity-modulated radiation therapy for head-and-neck cancer: the UCSF experience focusing on target volume delineation. Int. J. Radiat. Oncol. Biol. Phys. 57(1), 49–60 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    B.D. Rosenbluth, V. Serrano, L. Happersett, A.R. Shaha, R.M. Tuttle, A. Narayana, S.L. Wolden, K.E. Rosenzweig, L.M. Chong, N.Y. Lee, Intensity-modulated radiation therapy for the treatment of nonanaplastic thyroid cancer. Int. J. Radiat. Oncol. Biol. Phys. 63(5), 1419–1426 (2005). doi:10.1016/j.ijrobp.2005.05.043 CrossRefPubMedGoogle Scholar
  12. 12.
    T.G. Urbano, C.H. Clark, V.N. Hansen, E.J. Adams, E.A. Miles, H. Mc Nair, A.M. Bidmead, J. Warrington, D.P. Dearnaley, C. Harmer, K.J. Harrington, C.M. Nutting, Intensity Modulated Radiotherapy (IMRT) in locally advanced thyroid cancer: acute toxicity results of a phase I study. Radiother. Oncol. 85(1), 58–63 (2007). doi:10.1016/j.radonc.2007.07.020 CrossRefPubMedGoogle Scholar
  13. 13.
    D.L. Schwartz, M.J. Lobo, K.K. Ang, W.H. Morrison, D.I. Rosenthal, A. Ahamad, D.B. Evans, G. Clayman, S.I. Sherman, A.S. Garden, Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment. Int. J. Radiat. Oncol. Biol. Phys. 74(4), 1083–1091 (2009). doi:10.1016/j.ijrobp.2008.09.023 CrossRefPubMedGoogle Scholar
  14. 14.
    A. Bhatia, A. Rao, K.K. Ang, A.S. Garden, W.H. Morrison, D.I. Rosenthal, D.B. Evans, G. Clayman, S.I. Sherman, D.L. Schwartz, Anaplastic thyroid cancer: clinical outcomes with conformal radiotherapy. Head Neck 32(7), 829–836 (2010). doi:10.1002/hed.21257 PubMedGoogle Scholar
  15. 15.
    R.L. Foote, J.R. Molina, J.L. Kasperbauer, R.V. Lloyd, B. McIver, J.C. Morris, C.S. Grant, G.B. Thompson, M.L. Richards, I.D. Hay, R.C. Smallridge, K.C. Bible, Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 21(1), 25–30 (2011). doi:10.1089/thy.2010.0220 CrossRefPubMedGoogle Scholar
  16. 16.
    X. He, D. Li, C. Hu, Z. Wang, H. Ying, Y. Wu, Outcome after intensity modulated radiotherapy for anaplastic thyroid carcinoma. BMC Cancer 14, 235 (2014). doi:10.1186/1471-2407-14-235 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    National Cancer Data Base. (2014). Accessed May 2014Google Scholar
  18. 18.
    A. Fritz, C. Percy, A. Jack, K. Shanmugarathnam, L. Sobin, D.M. Parkin, S. Whelan, International Classification of Disease for Oncology, 3rd edn. (World Health Organization, Geneva, 2000)Google Scholar
  19. 19.
    C.M. Nutting, D.J. Convery, V.P. Cosgrove, C. Rowbottom, L. Vini, C. Harmer, D.P. Dearnaley, S. Webb, Improvements in target coverage and reduced spinal cord irradiation using intensity-modulated radiotherapy (IMRT) in patients with carcinoma of the thyroid gland. Radiother. Oncol. 60(2), 173–180 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    M.L. Klem, J.G. Mechalakos, S.L. Wolden, M.J. Zelefsky, B. Singh, D. Kraus, A. Shaha, J. Shah, D.G. Pfister, N.Y. Lee, Intensity-modulated radiotherapy for head and neck cancer of unknown primary: toxicity and preliminary efficacy. Int. J. Radiat. Oncol. Biol. Phys. 70(4), 1100–1107 (2008). doi:10.1016/j.ijrobp.2007.07.2351 CrossRefPubMedGoogle Scholar
  21. 21.
    M.K. Kam, S.F. Leung, B. Zee, R.M. Chau, J.J. Suen, F. Mo, M. Lai, R. Ho, K.Y. Cheung, B.K. Yu, S.K. Chiu, P.H. Choi, P.M. Teo, W.H. Kwan, A.T. Chan, Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J. Clin. Oncol. 25(31), 4873–4879 (2007). doi:10.1200/jco.2007.11.5501 CrossRefPubMedGoogle Scholar
  22. 22.
    B.A. Guadagnolo, C.C. Liu, J.N. Cormier, X.L. Du, Evaluation of trends in the use of intensity-modulated radiotherapy for head and neck cancer from 2000 through 2005: socioeconomic disparity and geographic variation in a large population-based cohort. Cancer 116(14), 3505–3512 (2010). doi:10.1002/cncr.25205 CrossRefPubMedGoogle Scholar
  23. 23.
    S.P. Elliott, S.L. Jarosek, B.A. Virnig: Changes across time and geography in the use of prostate radiation technologies for newly diagnosed older cancer patients: 2006–2008: Data Points # 16. In: Data Points Publication Series. Agency for Healthcare Research and Quality (US), Rockville (MD) (2011)Google Scholar
  24. 24.
    E.K. Cobran, R.C. Chen, R. Overman, A.M. Meyer, T.M. Kuo, J. O’Brien, T. Sturmer, N.C. Sheets, G.H. Goldin, D.C. Penn, P.A. Godley, W.R. Carpenter, Racial differences in diffusion of intensity-modulated radiation therapy for localized prostate cancer. Am. J. Mens Health (2015). doi:10.1177/1557988314568184 PubMedPubMedCentralGoogle Scholar
  25. 25.
    M. Biermann, M.K. Pixberg, B. Riemann, A. Schuck, A. Heineck, K.W. Schmid, N. Willich, H. Dralle, O. Schober, Results after 874 patient-years of follow-up in the MSDS-trial. Nuklearmedizin 48(3), 89–98 (2009). doi:10.3413/nukmed-0221. quiz N15 PubMedGoogle Scholar
  26. 26.
    D.P. Winchester, A.K. Stewart, J.L. Phillips, E.E. Ward, The national cancer data base: past, present, and future. Ann. Surg. Oncol. 17(1), 4–7 (2010). doi:10.1245/s10434-009-0771-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of IowaIowa CityUSA
  2. 2.Department of Radiation OncologyDuke UniversityDurhamUSA
  3. 3.Department of SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations