, Volume 53, Issue 3, pp 722–729 | Cite as

Delaying time to first nocturnal void may have beneficial effects on reducing blood glucose levels

  • Kristian Vinter Juul
  • Niels Jessen
  • Donald L. Bliwise
  • Egbert van der Meulen
  • Jens Peter Nørgaard
Original Article


Experimental studies disrupting sleep and epidemiologic studies of short sleep durations indicate the importance of deeper and longer sleep for cardiometabolic health. We examined the potential beneficial effects of lengthening the first uninterrupted sleep period (FUSP) on blood glucose. Long-term data (≥3 months of treatment) were derived from three clinical trials, testing low-dose (10–100 µg) melt formulations of desmopressin in 841 male and female nocturia patients (90 % of which had nocturnal polyuria). We performed post hoc multiple regression with non-fasting blood glucose as dependent variable and the following potential covariates/factors: time-averaged change of FUSP since baseline, age, gender, race, ethnicity, baseline glucose, baseline weight, change in weight, patient metabolic status (normal, metabolic syndrome, type II diabetes), dose, follow-up interval, and time of random glucose sampling. Increases in FUSP resulted in statistically significant reductions in blood glucose (p = 0.0131), even after controlling for all remaining covariates. Per hour increase in time to first void was associated with glucose decreases of 1.6 mg/dL. This association was more pronounced in patients with increased baseline glucose levels (test of baseline glucose by FUSP change interaction: p < 0.0001). Next to FUSP change, other statistically significant confounding factors/covariates also associated with glucose changes were gender, ethnicity, metabolic subgroup, and baseline glucose. These analyses indicate that delaying time to first void may have beneficial effects on reducing blood glucose in nocturia patients. These data are among the first to suggest that improving sleep may have salutary effects on a cardiometabolic measure.


Sleep disturbance Metabolic syndrome Blood glucose 



Kristian Vinter Juul, Egbert van der Meulen, and Jens Peter Nørgaard are employees of Ferring Pharmaceuticals. Donald Bliwise is a Consultant to Ferring Pharmaceuticals. This study was funded by a Grant by Ferring Pharmaceuticals.

Author Contributions

KVJ researched data, contributed to discussion, and wrote manuscript. NJ contributed discussion and reviewed/edited manuscript. DLB researched data, contributed to discussion, and wrote manuscript. EAvdM researched and analyzed data and contributed to discussion. JPN wrote manuscript reviewed/edited manuscript and contributed to discussion.


  1. 1.
    S. Reutrakul, E. Van Cauter, Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann. NY Acad. Sci. 1311, 151–173 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    J. Cedernaes, H.B. Schiöth, C. Benedict, Determinants of shortened, disrupted, and mistimed sleep and associated metabolic health consequences in healthy humans. Diabetes 64, 1073–1080 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    F.P. Cappuccio, L. D’Elia, P. Strazzullo, M.A. Miller, Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 33, 414–420 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    E. Tasali, R. Leproult, D.A. Ehrmann, E. Van Cauter, Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. USA. 105, 1044–1049 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    R.N. Bergman, Lilly Lecture 1989. Toward physiological understanding of glucose tolerance-minimal-model approach. Diabetes 38, 1512–1527 (1989)CrossRefPubMedGoogle Scholar
  6. 6.
    J.O. Clausen, K. Borch-Johnsen, H. Ibsen, R.N. Bergman, P. Houggard, K. Winther, O. Pedersen, Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. J. Clin. Invest. 98, 1195–1209 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    N. Herzog, K. Jauch-Chara, F. Hyzy, A. Richter, A. Friedrich, C. Benedict, K.M. Oltmanns, Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology 38, 2075–2082 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    J. Cedernaes, L. Lampola, E.K. Axelsson, L. Liethof, S. Hassanzadeh, A. Yeganeh, J.E. Broman, H.B. Schioth, C. Benedict, A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men. J. Sleep Res. (2015). doi: 10.1111/jsr.12340 Google Scholar
  9. 9.
    E. Donga, M. van Dijk, J.G. van Dijk, N.R. Biermasz, G.J. Lammers, K.W. van Kralingen, E.P. Corssmit, J.A. Romijn, A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J. Clin. Endocrinol. Metab. 95, 2963–2968 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    D.L. Bliwise, D.J. Dijk, K.V. Juul, Nocturia is associated with loss of deep sleep independently from sleep apnea. Neurourol. Urodyn. 34, 392 (2015)CrossRefPubMedGoogle Scholar
  11. 11.
    D.L. Bliwise, T. Holm-Larsen, S. Goble, J.P. Nørgaard, Short time to first void is associated with lower whole-night sleep quality in nocturia patients. J. Clin. Sleep Med. 11, 53–58 (2015)PubMedPubMedCentralGoogle Scholar
  12. 12.
    D.L. Bliwise, T. Holm-Larsen, S. Goble, K.V. Juul, E. van der Meulen, J.P. Nørgaard, Delay of first voiding episode is associated with longer reported sleep duration. Sleep Health 1, 211–213 (2015)CrossRefGoogle Scholar
  13. 13.
    P.K. Sand, R.R. Dmochowski, J. Reddy, E.A. van der Meulen, Efficacy and safety of low-dose desmopressin orally disintegrating tablet in women with nocturia: results of a multicenter, randomized, double-blind, placebo-controlled, parallel-group study. J. Urol. 190, 958–964 (2013)CrossRefPubMedGoogle Scholar
  14. 14.
    J.P. Weiss, S. Herschorn, C.D. Albei, E.A. van der Meulen, Efficacy and safety of low-dose desmopressin orally disintegrating tablet in men with nocturia: results of a multi-center, randomized, double-blind, placebo-controlled, parallel-group study. J. Urol. 190, 965–972 (2013)CrossRefPubMedGoogle Scholar
  15. 15.
    J.P. Weiss, N.R. Zinner, B.M. Klein, J.P. Nørgaard, Desmopressin orally disintegrating tablet effectively reduces nocturia: results of a randomized, double-blind, placebo-controlled trial. Neurourol. Urodyn. 31, 441–447 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    P.L. Flom, D.L. Cassell, Stopping stepwise: why stepwise and similar selection methods are bad, and what you should use. Proceedings of the 20th Annual NorthEast SAS Users Group and Proceedings of the SAS Global Forum, 361 (2008) Accessed 1 Feb 2016
  17. 17.
    O.M. Buxton, E. Marcelli, Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc. Sci. Med. 71, 1027–1036 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    H.K. Yaggi, A.B. Araujo, J.B. McKinlay, Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 29, 657–661 (2006)CrossRefPubMedGoogle Scholar
  19. 19.
    M.H. Hall, M.F. Muldoon, J.R. Jennings, D.J. Buysse, J.D. Flory, S.B. Manuck, Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep 31, 635–643 (2008)PubMedPubMedCentralGoogle Scholar
  20. 20.
    J.E. Gangwisch, S.B. Heymsfield, B. Boden-Albala, R.M. Buijs, F. Kreier, T.G. Pickering, A.G. Rundle, G.K. Zammit, D. Malaspina, Sleep duration as a risk factor for diabetes incidence in a large US sample. Sleep 30, 596–603 (2007)Google Scholar
  21. 21.
    P.M. Nilsson, M. Roost, G. Engstrom, B. Hedblad, G. Berglund, Incidence of diabetes in middle aged men is related to sleep disturbances. Diabetes Care 27, 2464–2469 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    L. Mallon, J.E. Broman, J. Hetta, High incidence of diabetes in men with sleep complaints or short-sleep duration: a 12-year follow up stud of a middle-aged population. Diabetes Care 28, 2762–2767 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    A.K. Eriksson, A. Ekbom, F. Granath, A. Hilding, S. Efendic, C.G. Ostenson, Psychological distress and risk of pre-diabetes and type 2 diabetes in a prospective study of Swedish middle-aged men and women. Diabetes Med. 25, 834–842 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Spiegel, R. Leproult, E. Van Cauter, Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999)CrossRefPubMedGoogle Scholar
  25. 25.
    J.L. Broussard, D.A. Ehrmann, E. Van Cauter, E. Tasali, M.J. Brady, Imparied insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann. Intern. Med. 157, 549–557 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    A.V. Nedeltcheva, L. Kessler, J. Imperial, P.D. Penev, Exposure to recurrent sleep restriction in the setting high caloric intake and physical inactivity results in increased insulin resistance and reduce glucose tolerance. J. Clin. Enocrinol. Metab. 94, 3242–3250 (2009)CrossRefGoogle Scholar
  27. 27.
    O.M. Buxton, M. Pavlova, W.E. Reid, W. Wang, D.C. Simonson, G.K. Adler, Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 59, 2126–2133 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    W.M. Van Leeuwen, C. Hublin, M. Sallinen, M. Harma, A. Hirvonen, T. Van Porkka-Heiskanen, Prolonged sleep restriction affects glucose metabolism in healthy young men. Int. J. Endocrinol. (2010). doi: 10.1155/2010/108641 PubMedPubMedCentralGoogle Scholar
  29. 29.
    R. Leproult, G. Deliens, M. Gilson, P. Peigneux, Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep 38, 707–715 (2015)PubMedPubMedCentralGoogle Scholar
  30. 30.
    J.L. Broussard, K. Wroblewski, J.M. Kilkus, E. Tasali, Two nights of recovery sleep reverses the effects of short-term sleep restriction on diabetes risk. Diabetes Care 39, e40–e41 (2016)CrossRefPubMedGoogle Scholar
  31. 31.
    S.B. Catrina, R. Rotarus, I.R. Botusan, M. Coculescu, K. Brismar, Desmopressin increases IGF-binding protein-1 in humans. Eur. J. Endocrinol. 158, 479–482 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    B.A. Spruce, A.J. McCulloch, J. Burd, H. Orskov, A. Heaton, P.H. Baylis, K.G. Alberti, The effect of vasopressin infusion on glucose metabolism in man. Clin. Endocrinol. 22, 463–468 (1985)CrossRefGoogle Scholar
  33. 33.
    T. Aoyagi, J. Birumachi, M. Hiroyama, Y. Fujiwara, A. Sanbe, J. Yamauchi, A. Tanoue, Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology 148, 2075–2084 (2007)CrossRefPubMedGoogle Scholar
  34. 34.
    M.H. Ebell, T. Radke, J. Gardner, A systematic review of the efficacy and safety of desmopressin for nocturia in adults. J. Urol. 192, 829–835 (2014)CrossRefPubMedGoogle Scholar
  35. 35.
    B. Djavan, S. Milania, J. Davies, J. Bolodeokub, The impact of tamsulosin oral controlled absorption system (OCAS) on nocturia and the quality of sleep: preliminary results of a pilot study. Eur. Urol. Suppl. 4, 61–68 (2005)CrossRefGoogle Scholar
  36. 36.
    O. Yokoyama, O. Yamaguchi, H. Kakizaki, N. Itoh, T. Yokota, H. Okada, O. Ishizuka, S. Ozono, M. Gotoh, T. Sugiyama, N. Seki, M. Yoshida, S. Yamada, Efficacy of solifenacin on nocturia in Japanese patients with overactive bladder: impact on sleep evaluated by bladder diary. J. Urol. 186, 170–174 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    D.J. Dijk, Regulation and functional correlates of slow wave sleep. J. Clin. Sleep Med. 5, S6–S15 (2009)PubMedPubMedCentralGoogle Scholar
  38. 38.
    K. Torimoto, A. Hirayama, C. Matsushita, Y. Matsumoto, A. Yamada, K. Fujimoto, Y. Hirao, Evaluation of sleep quantity and quality in older adults with nocturia using portable electroencephalogram acquisition device. Neurourol. Urodyn. 31, 982–983 (2012)Google Scholar
  39. 39.
    K. Torimoto, A. Hirayama, C. Matsushita, Y. Matsumoto, A. Yamada, K. Fujimoto, Y. Hirao, Evaluation of sleep quantity and quality in older adults with nocturia using portable electroencephalogram acquisition device. J. Urol. 189, e557–e558 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Rachel, R.R. Markwald, L. Edward, E.L. Melanson, R. Mark, M.R. Smith, J. Higgins, L. Perreault, R.H. Eckel, K.P. Wright, Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. 110, 5695–5700 (2013)CrossRefGoogle Scholar
  41. 41.
    D. Grimaldi, G. Beccuti, C. Touma, E. Van Cauter, B. Mokhlesi, Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. Diabetes Care 37, 355–363 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    P. Bialasiewicz, L. Czupryniak, M. Pawlowski, D. Nowak, Sleep disordered breathing in REM sleep reverses the downward trend in glucose concentration. Sleep Med. 12, 76–82 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    M. Bursztyn, J. Jacob, J. Stessman, Usefulness of nocturia as a mortality risk factor for coronary heart disease among persons born in 1920 or 1921. Am. J. Cardiol. 98, 1311–1315 (2006)CrossRefPubMedGoogle Scholar
  44. 44.
    V. Kupelian, M.P. Fitzgerald, S.A. Kaplan, J.P. Nørgaard, G.R. Chiu, R.C. Rosen, Association of nocturia and mortality: results from the Third National Health and Nutrition Examination Survey. J. Urol. 185, 571–577 (2011)CrossRefPubMedGoogle Scholar
  45. 45.
    D.J. Lightner, A.E. Krambeck, D.J. Jacobson, M.E. McGree, S.J. Jacobsen, M.M. Lieber, V.L. Roger, C.J. Girman, J.L. St Sauver, Nocturia is associated with an increased risk of coronary heart disease and death. BJU. Int. 110(6), 848–853 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    H. Nakagawa, K. Niu, A. Hozawa, Y. Ikeda, Y. Kaiho, K. Ohmori-Matsuda, N. Nakaya, S. Kuriyama, S. Ebihara, R. Nagatomi, I. Tsuli, Y. Arai, Impact of nocturia on bone fracture and mortality in older individuals: a Japanese longitudinal cohort study. J. Urol. 184, 1413–1418 (2010)CrossRefPubMedGoogle Scholar
  47. 47.
    L. Abraham, A. Hareendran, I.W. Mills, M.L. Martin, P. Abrams, M.J. Drake, R.P. MacDonagh, J.G. Noble, Development and validation of a quality-of-life measure for men with nocturia. Urology 63, 481–486 (2004)CrossRefPubMedGoogle Scholar
  48. 48.
    L.L. Mock, P.A. Parmelee, N. Kutner, J. Scott, T.M. Johnson 2nd, Content validation of symptom-specific nocturia quality-of-life instrument developed in men: issues expressed by women, as well as men. Urology 72, 736–742 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kristian Vinter Juul
    • 1
  • Niels Jessen
    • 2
  • Donald L. Bliwise
    • 3
  • Egbert van der Meulen
    • 4
  • Jens Peter Nørgaard
    • 1
  1. 1.Faculty of Medicine and Health SciencesUniversity of GhentGhentBelgium
  2. 2.Department for Clinical MedicineAarhus University HospitalAarhusDenmark
  3. 3.Program in Sleep, Aging and ChronobiologyEmory University School of MedicineAtlantaUSA
  4. 4.Ferring International PharmaScience CenterCopenhagenDenmark

Personalised recommendations