Advertisement

Endocrine

, Volume 53, Issue 3, pp 710–721 | Cite as

Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome

  • Keisuke KuwaharaEmail author
  • Toru Honda
  • Tohru Nakagawa
  • Shuichiro Yamamoto
  • Shamima Akter
  • Takeshi Hayashi
  • Tetsuya Mizoue
Original Article

Abstract

Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30–64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for <7.5, 7.5 to <16.5, and ≥16.5 metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

Keywords

Cohort studies Intensity of exercise Dose of exercise Domain of physical activity Prevention Asians 

Notes

Acknowledgments

The authors thank Maki Konishi (National Center for Global Health and Medicine) for data management, and Rika Osawa (National Center for Global Health and Medicine) for administrative support.

Funding

The present study was funded by a Grant-in-Aid for Young Scientists (B) (25871166) from the Japan Society for the Promotion of Science, and a fund from the Industrial Health Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest. Honda, T., Nakagawa, T., Yamamoto, S., and Hayashi, T. are occupational physician in the participating company.

Supplementary material

12020_2016_911_MOESM1_ESM.pdf (22 kb)
Supplementary material 1 (PDF 22 kb)

References

  1. 1.
    K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    S.H. Wu, Z. Liu, S.C. Ho, Metabolic syndrome and all-cause mortality: a meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 25, 375–384 (2010)CrossRefPubMedGoogle Scholar
  3. 3.
    S. Mottillo, K.B. Filion, J. Genest, L. Joseph, L. Pilote, P. Poirier, S. Rinfret, E.L. Schiffrin, M.J. Eisenberg, The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 56, 1113–1132 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Esposito, P. Chiodini, A. Colao, A. Lenzi, D. Giugliano, Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35, 2402–2411 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    G. Thomas, A.R. Sehgal, S.R. Kashyap, T.R. Srinivas, J.P. Kirwan, S.D. Navaneethan, Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 6, 2364–2373 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    E.S. Ford, C. Li, N. Sattar, Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 31, 1898–1904 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    M.A. Cornier, D. Dabelea, T.L. Hernandez, R.C. Lindstrom, A.J. Steig, N.R. Stob, R.E. Van Pelt, H. Wang, R.H. Eckel, The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    D. He, B. Xi, J. Xue, P. Huai, M. Zhang, J. Li, Association between leisure time physical activity and metabolic syndrome: a meta-analysis of prospective cohort studies. Endocrine 46, 231–240 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    Y. Li, H. Yatsuya, H. Iso, K. Tamakoshi, H. Toyoshima, Incidence of metabolic syndrome according to combinations of lifestyle factors among middle-aged Japanese male workers. Prev. Med. 51, 118–122 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    D.E. Laaksonen, H.M. Lakka, J.T. Salonen, L.K. Niskanen, R. Rauramaa, T.A. Lakka, Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 25, 1612–1618 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    P. Cheriyath, Y. Duan, Z. Qian, L. Nambiar, D. Liao, Obesity, physical activity and the development of metabolic syndrome: the atherosclerosis risk in Communities Study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 309–313 (2010)PubMedGoogle Scholar
  12. 12.
    P.T. Bradshaw, K.L. Monda, J. Stevens, Metabolic syndrome in healthy obese, overweight, and normal weight individuals: the atherosclerosis risk in Communities Study. Obesity (Silver Spring) 21, 203–209 (2013)CrossRefGoogle Scholar
  13. 13.
    A.H. Laursen, O.P. Kristiansen, J.L. Marott, P. Schnohr, E. Prescott, Intensity versus duration of physical activity: implications for the metabolic syndrome: a prospective cohort study. BMJ Open 2, e001711 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    I. Janssen, R. Ross, Vigorous intensity physical activity is related to the metabolic syndrome independent of the physical activity dose. Int. J. Epidemiol. 41, 132–140 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Mozumdar, G. Liguori, Occupational physical activity and the metabolic syndrome among working women: a Go Red North Dakota study. J. Phys. Act. Health 8, 321–331 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    H. Cai, J. Huang, G. Xu, Z. Yang, M. Liu, Y. Mi, W. Liu, H. Wang, D. Qian, Prevalence and determinants of metabolic syndrome among women in Chinese rural areas. PLoS One 7, e36936 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M. Halldin, M. Rosell, U. de Faire, M.L. Hellenius, The metabolic syndrome: prevalence and association to leisure-time and work-related physical activity in 60-year-old men and women. Nutr. Metab. Cardiovasc. Dis. 17, 349–357 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Kwaśniewska, K. Kaczmarczyk-Chałas, M. Pikala, G. Broda, K. Kozakiewicz, A. Pająk, A. Tykarski, T. Zdrojewski, W. Drygas, Commuting physical activity and prevalence of metabolic disorders in Poland. Prev. Med. 51, 482–487 (2010)CrossRefPubMedGoogle Scholar
  19. 19.
    A. Hori, A. Nanri, N. Sakamoto, K. Kuwahara, S. Nagahama, N. Kato, K. Fukasawa, K. Nakamoto, M. Ohtsu, A. Matsui, T. Kochi, M. Eguchi, T. Imai, A. Nishihara, K. Tomita, T. Murakami, C. Shimizu, M. Shimizu, T. Miyamoto, A. Uehara, M. Yamamoto, T. Nakagawa, S. Yamamoto, T. Honda, H. Okazaki, N. Sasaki, K. Kurotani, N.M. Pham, I. Kabe, T. Mizoue, T. Sone, S. Dohi, Japan Epidemiology Collaboration on Occupational Health Study Group, Comparison of body mass index, waist circumference, and waist-to-height ratio for predicting the clustering of cardiometabolic risk factors by age in Japanese workers. Circ. J. 78, 1160–1168 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    K. Kuwahara, T. Honda, T. Nakagawa, S. Yamamoto, S. Akter, T. Hayashi, T. Mizoue, Associations of leisure-time, occupational, and commuting physical activity with risk of depressive symptoms among Japanese workers: a cohort study. Int. J. Behav. Nutr. Phys. Act. 12, 119 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1), S62–S69 (2010)CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cabinet Office, Government of Japan, Public Opinion Survey on Physical Fitness and Sports (Government of Japan, Public Relations Office, 2006)Google Scholar
  23. 23.
    B.E. Ainsworth, W.L. Haskell, S.D. Herrmann, N. Meckes, D.R. Bassett Jr, C. Tudor-Locke, J.L. Greer, J. Vezina, M.C. Whitt-Glover, A.S. Leon, 2011 compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    Physical Activity Guidelines Advisory Committee, Physical Activity Guidelines Advisory Committee Report, 2008. U.S. Department of Health and Human Services (2008)Google Scholar
  25. 25.
    World Health Organization, Global Recommendations on Physical Activity for Health (World Health Organization, Geneva, 2010)Google Scholar
  26. 26.
    C.P. Wen, J.P. Wai, M.K. Tsai, Y.C. Yang, T.Y. Cheng, M.C. Lee, H.T. Chan, C.K. Tsao, S.P. Tsai, X. Wu, Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    T. Hayashi, K. Tsumura, C. Suematsu, K. Okada, S. Fujii, G. Endo, Walking to work and the risk for hypertension in men: the Osaka Health Survey. Ann. Intern. Med. 131, 21–26 (1999)CrossRefPubMedGoogle Scholar
  28. 28.
    K.K. Sato, T. Hayashi, H. Kambe, Y. Nakamura, N. Harita, G. Endo, T. Yoneda, Walking to work is an independent predictor of incidence of type 2 diabetes in Japanese men: the Kansai Healthcare Study. Diabetes Care 30, 2296–2298 (2007)CrossRefPubMedGoogle Scholar
  29. 29.
    S.M. Bianchi, L.C. Sayer, M.A. Milkie, J.P. Robinson, Housework: who did, does or will do it, and how much does it matter? Soc. Forces 91, 55–63 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    K. Kuwahara, A. Uehara, K. Kurotani, N.M. Pham, A. Nanri, M. Yamamoto, T. Mizoue, Association of cardiorespiratory fitness and overweight with risk of type 2 diabetes in Japanese men. PLoS One 9, e98508 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    A. Norman, R. Bellocco, A. Bergstrom, A. Wolk, Validity and reproducibility of self-reported total physical activity: differences by relative weight. Int. J. Obes. Relat. Metab. Disord. 25, 682–688 (2001)CrossRefPubMedGoogle Scholar
  32. 32.
    K.H. Pietiläinen, M. Korkeila, L.H. Bogl, K.R. Westerterp, H. Yki-Jarvinen, J. Kaprio, A. Rissanen, Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labeled water and co-twin assessments. Int. J. Obes. (Lond.) 34, 437–445 (2010)CrossRefGoogle Scholar
  33. 33.
    M.A. Beenackers, C.B. Kamphuis, K. Giskes, J. Brug, A.E. Kunst, A. Burdorf, F.J. van Lenthe, Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 9, 116 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    I. Sommer, U. Griebler, P. Mahlknecht, K. Thaler, K. Bouskill, G. Gartlehner, S. Mendis, Socioeconomic inequalities in non-communicable diseases and their risk factors: an overview of systematic reviews. BMC Public Health 15, 914 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    S.W. Ng, B.M. Popkin, Time use and physical activity: a shift away from movement across the globe. Obes. Rev. 13, 659–680 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    J.M. Jakicic, The effect of physical activity on body weight. Obesity (Silver Spring) 17(3), S34–S38 (2009)CrossRefGoogle Scholar
  37. 37.
    C. Frosig, A.J. Rose, J.T. Treebak, B. Kiens, E.A. Richter, J.F. Wojtaszewski, Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56, 2093–2102 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    V.A. Cornelissen, R.H. Fagard, Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46, 667–675 (2005)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Mann, C. Beedie, A. Jimenez, Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 44, 211–221 (2014)CrossRefPubMedGoogle Scholar
  40. 40.
    Y. Matsuzawa, T. Funahashi, T. Nakamura, The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 18, 629–639 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    E.G. Trapp, D.J. Chisholm, J. Freund, S.H. Boutcher, The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. (Lond.) 32, 684–691 (2008)CrossRefGoogle Scholar
  42. 42.
    R.H. Coker, R.H. Williams, P.M. Kortebein, D.H. Sullivan, W.J. Evans, Influence of exercise intensity on abdominal fat and adiponectin in elderly adults. Metab. Syndr. Relat. Disord. 7, 363–368 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    C.E. Matthews, X.O. Shu, G. Yang, F. Jin, B.E. Ainsworth, D. Liu, Y.T. Gao, W. Zheng, Reproducibility and validity of the Shanghai Women’s Health Study physical activity questionnaire. Am. J. Epidemiol. 158, 1114–1122 (2003)CrossRefPubMedGoogle Scholar
  44. 44.
    B.E. Ainsworth, A.S. Leon, M.T. Richardson, D.R. Jacobs, R.S. Paffenbarger Jr, Accuracy of the college alumnus physical activity questionnaire. J. Clin. Epidemiol. 46, 1403–1411 (1993)CrossRefPubMedGoogle Scholar
  45. 45.
    N. Kurtze, V. Rangul, B.E. Hustvedt, W. Flanders, Reliability and validity of self-reported physical activity in the Nord-Trøndelag Health Study (HUNT 2). Eur. J. Epidemiol. 22, 379–387 (2007)CrossRefPubMedGoogle Scholar
  46. 46.
    Y. Tsubono, I. Tsuji, K. Fujita, N. Nakaya, A. Hozawa, T. Ohkubo, A. Kuwahara, Y. Watanabe, K. Ogawa, Y. Nishino, S. Hisamichi, Validation of walking questionnaire for population-based prospective studies in Japan: comparison with pedometer. J. Epidemiol. 12, 305–309 (2002)CrossRefPubMedGoogle Scholar
  47. 47.
    A.D. Frugé, S.H. Byrd, B.J. Fountain, J.S. Cossman, M.W. Schilling, P. Gerard, Increased physical activity may be more protective for metabolic syndrome than reduced caloric intake: an analysis of estimated energy balance in U.S. adults—2007–2010 NHANES. Nutr. Metab. Cardiovasc. Dis. 25, 535–540 (2015)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Keisuke Kuwahara
    • 1
    • 2
    Email author
  • Toru Honda
    • 3
  • Tohru Nakagawa
    • 3
  • Shuichiro Yamamoto
    • 3
  • Shamima Akter
    • 1
  • Takeshi Hayashi
    • 3
  • Tetsuya Mizoue
    • 1
  1. 1.Department of Epidemiology and Prevention, Center for Clinical SciencesNational Center for Global Health and MedicineTokyoJapan
  2. 2.Teikyo University Graduate School of Public HealthTokyoJapan
  3. 3.Hitachi Health Care CenterHitachi, Ltd.HitachiJapan

Personalised recommendations