Advertisement

Endocrine

, Volume 53, Issue 1, pp 313–321 | Cite as

Bone resorption following weight loss surgery is associated with treatment procedure and changes in secreted Wnt antagonists

  • Dag Hofsø
  • Jens Bollerslev
  • Rune Sandbu
  • Anders Jørgensen
  • Kristin Godang
  • Jøran Hjelmesæth
  • Thor UelandEmail author
Original Article

Abstract

To assess if altered bone turnover following bariatric surgery is related to metabolic consequences of the surgical procedure or weight loss. We evaluated serum markers reflecting bone turnover and metabolic pathways at baseline and after 1-year in a controlled non-randomized clinical trial comparing Roux-en-Y gastric bypass surgery (n = 74) with lifestyle intervention (n = 63) on obesity-related comorbidities. The decrease in body mass index (BMI) was larger in the surgery (−14.0 kg/m2) compared to lifestyle (−3.7 kg/m2). Markedly increased bone turnover was observed following surgery compared to lifestyle intervention and was correlated with change in BMI. Stepwise multivariable regression analysis revealed that group (β = 0.31, p < 0.01), and changes in BMI (β = −0.28, p < 0.01), dickkopf-1 (β = 0.20, p < 0.001) and sclerostin (β = 0.11, p < 0.05) were predictors of change in the bone resorption marker N-terminal telopeptide. Our data support that mechanisms related to the procedure itself and changes in secreted Wnt antagonists may contribute to increased bone turnover following bariatric surgery.

Keywords

Bariatric surgery Bone turnover NTx Wnt antagonists DKK1 

Notes

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Informed consent

The regional ethics committee of the Southern Norway Regional Health Authority approved the study. Written informed consent was provided by all participants including permission to perform laboratory analysis.

Supplementary material

12020_2016_903_MOESM1_ESM.doc (90 kb)
Supplementary material 1 (DOC 89 kb)

References

  1. 1.
    E.W. Yu, Bone metabolism after bariatric surgery. J. Bone Miner. Res. 29, 1507–1518 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    M.P. Hage, F.G. El-Hajj, Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos. Int. 25, 423–439 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    E.M. Stein, S.J. Silverberg, Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diab. Endocrinol. 2, 165–174 (2014)CrossRefGoogle Scholar
  4. 4.
    W.J. Pories, Bariatric surgery: risks and rewards. J. Clin. Endocrinol. Metab. 93, S89–S96 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    E.W. Yu, M.L. Bouxsein, M.S. Putman, E.L. Monis, A.E. Roy, J.S. Pratt, W.S. Butsch, J.S. Finkelstein, Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J. Clin. Endocrinol. Metab. 100, 1452–1459 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    A.H. Maghrabi, K. Wolski, B. Abood, A. Licata, C. Pothier, D.L. Bhatt, S. Nissen, S.A. Brethauer, J.P. Kirwan, P.R. Schauer, S.R. Kashyap, Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity 23, 2344–2348 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    K.M. Nakamura, E.G. Haglind, J.A. Clowes, S.J. Achenbach, E.J. Atkinson, L.J. Melton III, K.A. Kennel, Fracture risk following bariatric surgery: a population-based study. Osteoporos. Int. 25, 151–158 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    A. Lalmohamed, F. de Vries, M.T. Bazelier, A. Cooper, T.P. van Staa, C. Cooper, N.C. Harvey, Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345, e5085 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    S. Ahlin, M. Peltonen, L. Anveden, P. Jacobson, K. Sjôholm, P.A. Svensson, I. Larsson, I. Nâslund, L. Sjôstrôm, L.M. Carlsson, Bariatric surgery increases the risk of osteoporosis and fractures in women in the Swedish Obese Subjects study. Obes. Facts 8(Suppl 1), 50–51 (2015)Google Scholar
  10. 10.
    S. Ikramuddin, C.J. Billington, W.J. Lee, J.P. Bantle, A.J. Thomas, J.E. Connett, D.B. Leslie, W.B. Inabnet III, R.W. Jeffery, K. Chong, L.M. Chuang, M.G. Sarr, M.D. Jensen, A. Vella, L. Ahmed, K. Belani, J.L. Schone, A.E. Olofson, H.A. Bainbridge, P.S. Laqua, Q. Wang, J. Korner, Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diab. Endocrinol. 3, 413–422 (2015)CrossRefGoogle Scholar
  11. 11.
    M.M. Brzozowska, A. Sainsbury, J.A. Eisman, P.A. Baldock, J.R. Center, Bariatric surgery, bone loss, obesity and possible mechanisms. Obes. Rev. 14, 52–67 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    C. Muschitz, R. Kocijan, C. Marterer, A.R. Nia, G.K. Muschitz, H. Resch, P. Pietschmann, Sclerostin levels and changes in bone metabolism after bariatric surgery. J. Clin. Endocrinol. Metab. 100, 891–901 (2015)CrossRefPubMedGoogle Scholar
  13. 13.
    S. Savastano, S.C. Di, L. Barrea, A. Colao, The complex relationship between obesity and the somatropic axis: the long and winding road. Growth Hormon. IGF Res. 24, 221–226 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Karsenty, F. Oury, The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J. Clin. Endocrinol. Metab. 95, 4795–4801 (2010)CrossRefPubMedGoogle Scholar
  15. 15.
    E. Biver, C. Salliot, C. Combescure, L. Gossec, P. Hardouin, I. Legroux-Gerot, B. Cortet, Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96, 2703–2713 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    D. Hofso, N. Nordstrand, L.K. Johnson, T.I. Karlsen, H. Hager, T. Jenssen, J. Bollerslev, K. Godang, R. Sandbu, J. Roislien, J. Hjelmesaeth, Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur. J. Endocrinol. 163, 735–745 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M. Malone, Recommended nutritional supplements for bariatric surgery patients. Ann. Pharmacother. 42, 1851–1858 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    K. Abegg, N. Gehring, C.A. Wagner, A. Liesegang, M. Schiesser, M. Bueter, T.A. Lutz, Roux-en-Y Gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R999–R1009 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    A.G. Robling, A.B. Castillo, C.H. Turner, Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    C.S. Riedt, R.E. Brolin, R.M. Sherrell, M.P. Field, S.A. Shapses, True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 14, 1940–1948 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    N.A. Sims, T.J. Martin, Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 3, 481 (2014)PubMedPubMedCentralGoogle Scholar
  22. 22.
    A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris, C.H. Turner, Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    A.R. Wijenayaka, M. Kogawa, H.P. Lim, L.F. Bonewald, D.M. Findlay, G.J. Atkins, Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6, e25900 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    K. Fujita, S. Janz, Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Mol. Cancer 6, 71 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Y.W. Qiang, Y. Chen, N. Brown, B. Hu, J. Epstein, B. Barlogie, J.D. Shaughnessy Jr, Characterization of Wnt/beta-catenin signalling in osteoclasts in multiple myeloma. Br. J. Haematol. 148, 726–738 (2010)CrossRefPubMedGoogle Scholar
  26. 26.
    L. Pederson, M. Ruan, J.J. Westendorf, S. Khosla, M.J. Oursler, Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 105, 20764–20769 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    T. Ueland, N.C. Olarescu, A.P. Jorgensen, K. Otterdal, P. Aukrust, K. Godang, T. Lekva, J. Bollerslev, Increased serum and bone matrix levels of the secreted Wnt antagonist DKK-1 in patients with growth hormone deficiency in response to growth hormone treatment. J. Clin. Endocrinol. Metab. 100, 736–743 (2015)CrossRefPubMedGoogle Scholar
  28. 28.
    R. Armamento-Villareal, C. Sadler, N. Napoli, K. Shah, S. Chode, D.R. Sinacore, C. Qualls, D.T. Villareal, Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 27, 1215–1221 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    A.G. Costa, S. Cremers, E. Dworakowski, M. Lazaretti-Castro, J.P. Bilezikian, Comparison of two commercially available ELISAs for circulating sclerostin. Osteoporos. Int. 25, 1547–1554 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    C. Muschitz, R. Kocijan, J. Haschka, A. Zendeli, T. Pirker, C. Geiger, A. Muller, B. Tschinder, A. Kocijan, C. Marterer, A. Nia, G.K. Muschitz, H. Resch, P. Pietschmann, The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: the BABS study. J. Bone Miner. Res. (2015). doi: 10.1002/jbmr.2707 Google Scholar
  31. 31.
    H.Z. Ke, W.G. Richards, X. Li, M.S. Ominsky, Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr. Rev. 33, 747–783 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dag Hofsø
    • 1
    • 2
  • Jens Bollerslev
    • 2
    • 4
  • Rune Sandbu
    • 1
  • Anders Jørgensen
    • 2
  • Kristin Godang
    • 2
  • Jøran Hjelmesæth
    • 1
    • 4
  • Thor Ueland
    • 3
    • 4
    Email author
  1. 1.Morbid Obesity Centre, Department of MedicineVestfold Hospital TrustTønsbergNorway
  2. 2.Section of Specialized Endocrinology, Department of EndocrinologyOslo University Hospital RikshospitaletOsloNorway
  3. 3.Research Institute of Internal MedicineOslo University Hospital RikshospitaletOsloNorway
  4. 4.Faculty of MedicineUniversity of OsloOsloNorway

Personalised recommendations