Advertisement

Endocrine

, Volume 53, Issue 1, pp 280–290 | Cite as

Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome

  • Linlin Jiang
  • Jia Huang
  • Yaxiao Chen
  • Yabo Yang
  • Ruiqi Li
  • Yu Li
  • Xiaoli Chen
  • Dongzi YangEmail author
Original Article

Abstract

This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667–0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.

Keywords

Circulating miRNAs Polycystic ovarian syndrome Impaired glucose metabolism Biomarker 

Abbreviations

PCOS

Polycystic ovarian syndrome

IGM

Impaired glucose metabolism

IGT

Impaired glucose tolerance

T2DM

Type 2 diabetes mellitus

NGT

Normal glucose tolerance

HOMA-IR

Homeostasis model assessment-insulin resistance

FAI

Free androgen index

Notes

Acknowledgments

This work was supported by a grant from the Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology (Grant No. [2013]163). Grant support was also provided by the National Natural Science Foundation of China (Grant No. 81370680 and 81402168); the Specialized Research Fund for the Doctoral Program of the Chinese Ministry of Education (Grant No. 20130171130009); the Natural Science Foundation of Key Research Project of Guangdong Province (Grant No: 2013020012660); and the Fund of Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310069).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights

All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2016_878_MOESM1_ESM.tif (877 kb)
miRNA expression in the PCOS-IGM subgroups. Box plots show miRNA expression levels in sera from PCOS-IFG/IGT patients (n = 48) and PCOS-T2DM patients (n = 17). The concentrations of miR-122 (a), miR-193b (b), miR-194 (c), and miR-199b-5p (d) did not differ significantly between the two groups (TIFF 877 kb)
12020_2016_878_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)
12020_2016_878_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 17 kb)

References

  1. 1.
    C.M. DeUgarte, A.A. Bartolucci, R. Azziz, Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83(5), 1454–1460 (2005). doi: 10.1016/j.fertnstert.2004.11.070 CrossRefPubMedGoogle Scholar
  2. 2.
    X. Chen, D. Yang, L. Li, S. Feng, L. Wang, Abnormal glucose tolerance in Chinese women with polycystic ovary syndrome. Hum. Reprod. 21(8), 2027–2032 (2006). doi: 10.1093/humrep/del142 CrossRefPubMedGoogle Scholar
  3. 3.
    R.M. Ni, Y. Mo, X. Chen, J. Zhong, W. Liu, D. Yang, Low prevalence of the metabolic syndrome but high occurrence of various metabolic disorders in Chinese women with polycystic ovary syndrome. Eur. J. Endocrinol. 161(3), 411–418 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Huang, R. Ni, X. Chen, L. Huang, Y. Mo, D. Yang, Metabolic abnormalities in adolescents with polycystic ovary syndrome in south China. Reprod. Biol. Endocrinol. 8, 142 (2010). doi: 10.1186/1477-7827-8-142 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    R.J. Norman, L. Masters, C.R. Milner, J.X. Wang, M.J. Davies, Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum. Reprod. 16(9), 1995–1998 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    H.J. Teede, S.K. Hutchison, S. Zoungas, The management of insulin resistance in polycystic ovary syndrome. Trends Endocrinol. Metab. 18(7), 273–279 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    D. Di Sarra, F. Tosi, C. Bonin, T. Fiers, J.M. Kaufman, C. Signori, F. Zambotti, M. Dall’Alda, B. Caruso, M.E. Zanolin, E. Bonora, P. Moghetti, Metabolic inflexibility is a feature of women with polycystic ovary syndrome and is associated with both insulin resistance and hyperandrogenism. J. Clin. Endocrinol. Metab. 98(6), 2581–2588 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    S. Ying, D.C. Chang, J.D. Miller, S. Lin The microRNA: overview of the RNA gene that modulates gene functions MicroRNA Protocols1-18 (Springer, Berlin, 2006)Google Scholar
  9. 9.
    A. Tanzer, P.F. Stadler, Evolution of microRNAs MicroRNA Protocols335-350 (Springer, New York, 2006)Google Scholar
  10. 10.
    M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, N. Rajewsky, Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209), 58–63 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    D.S. Karolina, S. Tavintharan, A. Armugam, S. Sepramaniam, S.L. Pek, M.T. Wong, S.C. Lim, C.F. Sum, K. Jeyaseelan, Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97(12), E2271–E2276 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    M.A.S. Dehwah, A. Xu, Q. Huang, MicroRNAs and type 2 diabetes/obesity. J. Genet. Genomics. 39(1), 11–18 (2012)CrossRefPubMedGoogle Scholar
  14. 14.
    A. Dai, H. Sun, T. Fang, Q. Zhang, S. Wu, Y. Jiang, L. Ding, G. Yan, Y. Hu, MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 587(15), 2474–2482 (2013). doi: 10.1016/j.febslet.2013.06.023 CrossRefPubMedGoogle Scholar
  15. 15.
    A.V. Sirotkin, D. Ovcharenko, R. Grossmann, M. Laukova, M. Mlyncek, Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219(2), 415–420 (2009). doi: 10.1002/jcp.21689 CrossRefPubMedGoogle Scholar
  16. 16.
    L. Jiang, J. Huang, L. Li, Y. Chen, X. Chen, X. Zhao, D. Yang, MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 100(5), E729–E738 (2015). doi: 10.1210/jc.2014-3827 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    R.S. Redis, S. Calin, Y. Yang, M.J. You, G.A. Calin, Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol. Ther. 136(2), 169–174 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    N. Kosaka, H. Iguchi, T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101(10), 2087–2092 (2010). doi: 10.1111/j.1349-7006.2010.01650.x CrossRefPubMedGoogle Scholar
  19. 19.
    W. Long, C. Zhao, C. Ji, H. Ding, Y. Cui, X. Guo, R. Shen, J. Liu, Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell. Physiol. Biochem. 33(5), 1304–1315 (2014). doi: 10.1159/000358698 CrossRefPubMedGoogle Scholar
  20. 20.
    C.F. Ding, W.Q. Chen, Y.T. Zhu, Y.L. Bo, H.M. Hu, R.H. Zheng, Circulating microRNAs in patients with polycystic ovary syndrome. Hum. Fertil. (Camb) 18(1), 22–29 (2015). doi: 10.3109/14647273.2014.956811 CrossRefGoogle Scholar
  21. 21.
    K. Wang, S. Zhang, B. Marzolf, P. Troisch, A. Brightman, Z. Hu, L.E. Hood, D.J. Galas, Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 106(11), 4402–4407 (2009). doi: 10.1073/pnas.0813371106 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    M. Xiang, Y. Zeng, R. Yang, H. Xu, Z. Chen, J. Zhong, H. Xie, Y. Xu, X. Zeng, U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454(1), 210–214 (2014). doi: 10.1016/j.bbrc.2014.10.064 CrossRefPubMedGoogle Scholar
  23. 23.
    H.M. Heneghan, N. Miller, A.J. Lowery, K.J. Sweeney, J. Newell, M.J. Kerin, Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 251(3), 499–505 (2010). doi: 10.1097/SLA.0b013e3181cc939f CrossRefPubMedGoogle Scholar
  24. 24.
    Z. Huang, D. Huang, S. Ni, Z. Peng, W. Sheng, X. Du, Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 127(1), 118–126 (2010). doi: 10.1002/ijc.25007 CrossRefPubMedGoogle Scholar
  25. 25.
    J. Wang, J. Chen, P. Chang, A. LeBlanc, D. Li, J.L. Abbruzzesse, M.L. Frazier, A.M. Killary, S. Sen, MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2(9), 807–813 (2009). doi: 10.1158/1940-6207.CAPR-09-0094 CrossRefGoogle Scholar
  26. 26.
    C.H. Lawrie, S. Gal, H.M. Dunlop, B. Pushkaran, A.P. Liggins, K. Pulford, A.H. Banham, F. Pezzella, J. Boultwood, J.S. Wainscoat, C.S. Hatton, A.L. Harris, Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141(5), 672–675 (2008). doi: 10.1111/j.1365-2141.2008.07077.x CrossRefPubMedGoogle Scholar
  27. 27.
    T.S. Wong, X.B. Liu, B.Y. Wong, R.W. Ng, A.P. Yuen, W.I. Wei, Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin. Cancer Res. 14(9), 2588–2592 (2008). doi: 10.1158/1078-0432.CCR-07-0666 CrossRefPubMedGoogle Scholar
  28. 28.
    I.S. Vlachos, N. Kostoulas, T. Vergoulis, G. Georgakilas, M. Reczko, M. Maragkakis, M.D. Paraskevopoulou, K. Prionidis, T. Dalamagas, A.G. Hatzigeorgiou, DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40(Web Server issue), W498–W504 (2012). doi: 10.1093/nar/gks494 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    R. Wang, J. Hong, Y. Cao, J. Shi, W. Gu, G. Ning, Y. Zhang, W. Wang, Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol. 172(3), 291–300 (2015). doi: 10.1530/EJE-14-0867 CrossRefPubMedGoogle Scholar
  30. 30.
    E. Arner, N. Mejhert, A. Kulyte, P.J. Balwierz, M. Pachkov, M. Cormont, S. Lorente-Cebrian, A. Ehrlund, J. Laurencikiene, P. Heden, K. Dahlman-Wright, J.F. Tanti, Y. Hayashizaki, M. Ryden, I. Dahlman, E. van Nimwegen, C.O. Daub, P. Arner, Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61(8), 1986–1993 (2012). doi: 10.2337/db11-1508 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Y. Yu, J. Chai, H. Zhang, W. Chu, L. Liu, L. Ma, H. Duan, B. Li, D. Li, miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock 42(6), 578–584 (2014). doi: 10.1097/SHK.0000000000000258 CrossRefPubMedGoogle Scholar
  32. 32.
    H.W. Ahn, R.D. Morin, H. Zhao, R.A. Harris, C. Coarfa, Z.J. Chen, A. Milosavljevic, M.A. Marra, A. Rajkovic, MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol. Hum. Reprod. 16(7), 463–471 (2010). doi: 10.1093/molehr/gaq017 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    F.I. Milagro, J. Miranda, M.P. Portillo, A. Fernandez-Quintela, J. Campion, J.A. Martinez, High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS One 8(1), e54319 (2013). doi: 10.1371/journal.pone.0054319 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    S.S. Lim, R.J. Norman, M.J. Davies, L.J. Moran, The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 14(2), 95–109 (2013). doi: 10.1111/j.1467-789X.2012.01053.x CrossRefPubMedGoogle Scholar
  35. 35.
    S. Koren, L.M. DiPilato, M.J. Emmett, A.L. Shearin, Q. Chu, B. Monks, M.J. Birnbaum, The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo. Diabetologia 58(5), 1063–1070 (2015). doi: 10.1007/s00125-015-3532-9 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    J.J. Brozinick, B.R. Roberts, G.L. Dohm, Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 52(4), 935–941 (2003)CrossRefPubMedGoogle Scholar
  37. 37.
    N. Xu, D.H. Geller, M.R. Jones, V.A. Funari, R. Azziz, M.O. Goodarzi, Comprehensive assessment of expression of insulin signaling pathway components in subcutaneous adipose tissue of women with and without polycystic ovary syndrome. J. Clin. Transl. Endocrinol. 2(3), 99–104 (2015). doi: 10.1016/j.jcte.2015.06.002 CrossRefPubMedGoogle Scholar
  38. 38.
    Y. Cheng, Y. Feng, L. Jansson, Y. Sato, M. Deguchi, K. Kawamura, A.J. Hsueh, Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J. (2015). doi: 10.1096/fj.14-267856 PubMedCentralGoogle Scholar
  39. 39.
    K. Kawamura, Y. Cheng, N. Suzuki, M. Deguchi, Y. Sato, S. Takae, C.H. Ho, N. Kawamura, M. Tamura, S. Hashimoto, Y. Sugishita, Y. Morimoto, Y. Hosoi, N. Yoshioka, B. Ishizuka, A.J. Hsueh, Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc. Natl. Acad. Sci. USA 110(43), 17474–17479 (2013). doi: 10.1073/pnas.1312830110 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    M.W. O’Reilly, A.E. Taylor, N.J. Crabtree, B.A. Hughes, F. Capper, R.K. Crowley, P.M. Stewart, J.W. Tomlinson, W. Arlt, Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione. J. Clin. Endocrinol. Metab. 99(3), 1027–1036 (2014)PubMedPubMedCentralGoogle Scholar
  41. 41.
    M. Brower, K. Brennan, M. Pall, R. Azziz, The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98(12), E1967–E1971 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009). doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Q. Sang, Z. Yao, H. Wang, R. Feng, H. Wang, X. Zhao, Q. Xing, L. Jin, L. He, L. Wu, Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 98(7), 3068–3079 (2013)CrossRefPubMedGoogle Scholar
  44. 44.
    M. Murri, M.ì.A. Insenser, E. Fern ì ndez-Dur ì n, L. Jos ì, , Escobar-Morreale, H.ì.C.F. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103 and miRNA-155 expression. J. Clin. Endocr. Metab. 2013–2218 (2013)Google Scholar
  45. 45.
    J. Hu, Y. Xu, J. Hao, S. Wang, C. Li, S. Meng, MiR-122 in hepatic function and liver diseases. Protein Cell 3(5), 364–371 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    S.N. Fleischhacker, S. Bauersachs, A. Wehner, K. Hartmann, K. Weber, Differential expression of circulating microRNAs in diabetic and healthy lean cats. Vet. J. 197(3), 688–693 (2013). doi: 10.1016/j.tvjl.2013.03.027 CrossRefPubMedGoogle Scholar
  47. 47.
    M.X. Liu, M.K. Siu, S.S. Liu, J.W. Yam, H.Y. Ngan, D.W. Chan, Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget 5(4), 944–958 (2014)CrossRefPubMedGoogle Scholar
  48. 48.
    F.J. Ortega, J.M. Mercader, J.M. Moreno-Navarrete, O. Rovira, E. Guerra, E. Esteve, G. Xifra, C. Martinez, W. Ricart, J. Rieusset, S. Rome, M. Karczewska-Kupczewska, M. Straczkowski, J.M. Fernandez-Real, Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5), 1375–1383 (2014). doi: 10.2337/dc13-1847 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Linlin Jiang
    • 1
  • Jia Huang
    • 1
  • Yaxiao Chen
    • 1
  • Yabo Yang
    • 1
  • Ruiqi Li
    • 1
  • Yu Li
    • 1
  • Xiaoli Chen
    • 1
  • Dongzi Yang
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations