, Volume 51, Issue 1, pp 52–62 | Cite as

Associations between two single-nucleotide polymorphisms (rs1801278 and rs2943641) of insulin receptor substrate 1 gene and type 2 diabetes susceptibility: a meta-analysis

  • Qiuyan Li
  • Yuandong Qiao
  • Chuntao Wang
  • Guangfa Zhang
  • Xuelong Zhang
  • Lidan Xu


The objective of the study is to assess the association between rs1801278 and rs2943641 of insulin receptor substrate 1 gene (IRS1) and the susceptibility to type 2 diabetes. A literature search strategy was conducted to identify all references lists of relevant studies. The fixed or random effect model was used to calculate the pooled ORs on the basis of heterogeneity. Further analyses were performed to explore the sources of heterogeneity by sensitivity analysis, meta-regression analysis, and subgroup analysis. There was significant association between rs1801278 and type 2 diabetes risk in recessive model (AA vs. GA + GG, p = 0.043) and codominant model (AA vs. GG, p = 0.007). Subgroup analysis showed that the association between rs1801278 and type 2 diabetes risk was significant in dominant model (GA + AA vs. GG, p = 0.044), codominant model (GA vs. GG, p = 0.039), codominant model (AA vs. GG, p = 0.044), overdominant model (GG + AA vs. GA, p = 0.037) in Asian and codominant model (AA vs. GG, p = 0.039) in Caucasian of rs1801278. The association between rs2943641 and type 2 diabetes risk was significant in codominant model (CT vs. CC, p = 0.023) in Caucasian. This meta-analysis suggests that rs1801278 may play a role in type 2 diabetes risk, especially in Asian. It also indicates that rs2943641 may be associated with type 2 diabetes risk in Caucasian. Further larger studies should be performed to warrant confirmation.


Meta-analysis IRS1 Type 2 diabetes Polymorphism Susceptibility 


Author Contribution

All authors have contributed to the paper. Li QY, Qiao YD, and Xu LD participated in the design of the study. Wang CT and Zhang GF assisted with data preparation. Zhang XL performed the statistical analysis. Li QY and Xu LD wrote the manuscript. All authors read and approved the final manuscript.


This work was supported by grants from the National Natural Science Foundation of China (81102278), the China Postdoctoral Science Foundation (20100481019), the Postdoctoral Science Special Foundation of Heilongjiang Province, China (LBH-TZ1208), the Postdoctoral Science Research Foundation of Heilongjiang Province, China (LBH-Q13128), and Wu lien-teh Youth Science Foundation of Harbin Medical University (WLD-QN1405).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

12020_2015_770_MOESM1_ESM.eps (3.7 mb)
Forest plot for pooled ORs for the associations between codominant model (GA vs. GG) of rs1801278 and type 2 diabetes in the overall population (A), Caucasian (B), and Asian (C). Each square is proportional to the study-specific weight (EPS 3754 kb)
12020_2015_770_MOESM2_ESM.eps (3.5 mb)
Forest plot for pooled ORs for the associations between codominant model (AA vs. GG) of rs1801278 and type 2 diabetes in the overall population (A), Caucasian (B), and Asian (C). Each square is proportional to the study-specific weight (EPS 3534 kb)
12020_2015_770_MOESM3_ESM.eps (4.1 mb)
Forest plot for pooled ORs for the associations between overdominant model (GG + AA vs. GA) of rs1801278 and type 2 diabetes in the overall population (A), Caucasian (B), and Asian (C). Each square is proportional to the study-specific weight (EPS 4224 kb)
12020_2015_770_MOESM4_ESM.doc (24 kb)
Supplementary material 4 (DOC 24 kb)
12020_2015_770_MOESM5_ESM.doc (24 kb)
Supplementary material 5 (DOC 23 kb)
12020_2015_770_MOESM6_ESM.doc (112 kb)
Supplementary material 6 (DOC 112 kb)
12020_2015_770_MOESM7_ESM.doc (30 kb)
Supplementary material 7 (DOC 30 kb)
12020_2015_770_MOESM8_ESM.doc (19 kb)
Supplementary material 8 (DOC 19 kb)


  1. 1.
    H. Onuma, H. Osawa, H. Makino, Role of resistin in insulin resistance. Rinsho Byori 56(8), 698–704 (2008)PubMedGoogle Scholar
  2. 2.
    M. Stumvoll, B.J. Goldstein, T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467), 1333–1346 (2005). doi: 10.1016/S0140-6736(05)61032-X PubMedCrossRefGoogle Scholar
  3. 3.
    G. Sesti, M. Federici, M.L. Hribal, D. Lauro, P. Sbraccia, R. Lauro, Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 15(12), 2099–2111 (2001). doi: 10.1096/fj.01-0009rev PubMedCrossRefGoogle Scholar
  4. 4.
    P. Langlais, Z. Yi, J. Finlayson, M. Luo, R. Mapes, E. De Filippis, C. Meyer, E. Plummer, P. Tongchinsub, M. Mattern, L.J. Mandarino, Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54(11), 2878–2889 (2011). doi: 10.1007/s00125-011-2271-9 PubMedCrossRefGoogle Scholar
  5. 5.
    A. Nandi, Y. Kitamura, C.R. Kahn, D. Accili, Mouse models of insulin resistance. Physiol. Rev. 84(2), 623–647 (2004). doi: 10.1152/physrev.00032.2003 PubMedCrossRefGoogle Scholar
  6. 6.
    K. Almind, C. Bjorbaek, H. Vestergaard, T. Hansen, S. Echwald, O. Pedersen, Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet 342(8875), 828–832 (1993)PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Imai, A. Fusco, Y. Suzuki, M.A. Lesniak, R. D’Alfonso, G. Sesti, A. Bertoli, R. Lauro, D. Accili, S.I. Taylor, Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 79(6), 1655–1658 (1994). doi: 10.1210/jcem.79.6.7989470 PubMedGoogle Scholar
  8. 8.
    M. Laakso, M. Malkki, P. Kekalainen, J. Kuusisto, S.S. Deeb, Insulin receptor substrate-1 variants in non-insulin-dependent diabetes. J. Clin. Investig. 94(3), 1141–1146 (1994). doi: 10.1172/JCI117429 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    K. Shimokawa, H. Kadowaki, H. Sakura, S. Otabe, R. Hagura, K. Kosaka, Y. Yazaki, Y. Akanuma, T. Kadowaki, Molecular scanning of the glycogen synthase and insulin receptor substrate-1 genes in Japanese subjects with non-insulin-dependent diabetes mellitus. Biochem. Biophys. Res. Commun. 202(1), 463–469 (1994). doi: 10.1006/bbrc.1994.1951 PubMedCrossRefGoogle Scholar
  10. 10.
    G.A. Hitman, K. Hawrami, M.I. McCarthy, M. Viswanathan, C. Snehalatha, A. Ramachandran, J. Tuomilehto, E. Tuomilehto-Wolf, A. Nissinen, O. Pedersen, Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease. Diabetologia 38(4), 481–486 (1995)PubMedCrossRefGoogle Scholar
  11. 11.
    H. Mori, M. Hashiramoto, M. Kishimoto, M. Kasuga, Amino acid polymorphisms of the insulin receptor substrate-1 in Japanese noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 80(9), 2822–2826 (1995). doi: 10.1210/jcem.80.9.7673430 PubMedGoogle Scholar
  12. 12.
    L.M. Chuang, C.S. Lai, J.I. Yeh, H.P. Wu, T.Y. Tai, B.J. Lin, No association between the Gly971Arg variant of the insulin receptor substrate 1 gene and NIDDM in the Taiwanese population. Diabetes Care 19(5), 446–449 (1996)PubMedCrossRefGoogle Scholar
  13. 13.
    R.J. Sigal, A. Doria, J.H. Warram, A.S. Krolewski, Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81(4), 1657–1659 (1996). doi: 10.1210/jcem.81.4.8636384 PubMedGoogle Scholar
  14. 14.
    S. Ura, E. Araki, H. Kishikawa, T. Shirotani, M. Todaka, S. Isami, S. Shimoda, R. Yoshimura, K. Matsuda, S. Motoyoshi, N. Miyamura, C.R. Kahn, M. Shichiri, Molecular scanning of the insulin receptor substrate-1 (IRS-1) gene in Japanese patients with NIDDM: identification of five novel polymorphisms. Diabetologia 39(5), 600–608 (1996)PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, N. Wat, I.M. Stratton, M.G. Warren-Perry, M. Orho, L. Groop, R.C. Turner, UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and beta 3-adrenergic-receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. UK Prospective Diabetes Study. Diabetologia 39(12), 1505–1511 (1996)PubMedCrossRefGoogle Scholar
  16. 16.
    V.R. Panz, F.J. Raal, S. O’Rahilly, M.A. Kedda, B.I. Joffe, Insulin receptor substrate-1 gene variants in lipoatrophic diabetes mellitus and non-insulin-dependent diabetes mellitus: a study of South African black and white subjects. Hum. Genet. 101(1), 118–119 (1997)PubMedCrossRefGoogle Scholar
  17. 17.
    F. Lepretre, N. Vionnet, S. Budhan, C. Dina, K.L. Powell, E. Genin, A.K. Das, V. Nallam, P. Passa, P. Froguel, Genetic studies of polymorphisms in ten non-insulin-dependent diabetes mellitus candidate genes in Tamil Indians from Pondicherry. Diabetes Metab 24(3), 244–250 (1998)PubMedGoogle Scholar
  18. 18.
    K. Yamada, X. Yuan, S. Ishiyama, S. Shoji, S. Kohno, K. Koyama, A. Koyanagi, W. Koyama, K. Nonaka, Codon 972 polymorphism of the insulin receptor substrate-1 gene in impaired glucose tolerance and late-onset NIDDM. Diabetes Care 21(5), 753–756 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    M.G. Baroni, M.P. D’Andrea, A. Montali, G. Pannitteri, F. Barilla, F. Campagna, E. Mazzei, S. Lovari, F. Seccareccia, P.P. Campa, G. Ricci, P. Pozzilli, G. Urbinati, M. Arca, A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 19(12), 2975–2980 (1999)PubMedCrossRefGoogle Scholar
  20. 20.
    L.M. Hart, R.P. Stolk, J.M. Dekker, G. Nijpels, D.E. Grobbee, R.J. Heine, J.A. Maassen, Prevalence of variants in candidate genes for type 2 diabetes mellitus in The Netherlands: the Rotterdam study and the Hoorn study. J. Clin. Endocrinol. Metab. 84(3), 1002–1006 (1999). doi: 10.1210/jcem.84.3.5563 PubMedGoogle Scholar
  21. 21.
    K. Ito, A. Katsuki, M. Furuta, M. Fujii, K. Tsuchihashi, Y. Hori, Y. Yano, Y. Sumida, Y. Adachi, Insulin sensitivity is not affected by mutation of codon 972 of the human IRS-1 gene. Horm. Res. 52(5), 230–234 (1999)PubMedCrossRefGoogle Scholar
  22. 22.
    H.H. Lei, J. Coresh, A.R. Shuldiner, E. Boerwinkle, F.L. Brancati, Variants of the insulin receptor substrate-1 and fatty acid binding protein 2 genes and the risk of type 2 diabetes, obesity, and hyperinsulinemia in African-Americans: the Atherosclerosis Risk in Communities Study. Diabetes 48(9), 1868–1872 (1999)PubMedCrossRefGoogle Scholar
  23. 23.
    H. Benecke, H. Topak, A. von zur Muhlen, F. Schuppert, A study on the genetics of obesity: influence of polymorphisms of the beta-3-adrenergic receptor and insulin receptor substrate 1 in relation to weight loss, waist to hip ratio and frequencies of common cardiovascular risk factors. Exp. Clin. Endocrinol. Diabetes 108(2), 86–92 (2000). doi: 10.1055/s-2000-5801 PubMedCrossRefGoogle Scholar
  24. 24.
    F.S. Celi, C. Negri, K. Tanner, N. Raben, F. De Pablo, A. Rovira, L.F. Pallardo, P. Martin-Vaquero, M.P. Stern, B.D. Mitchell, A.R. Shuldiner, Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Mexican Americans with Type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 16(5), 370–377 (2000)PubMedCrossRefGoogle Scholar
  25. 25.
    S.E. Flores-Martinez, S. Islas-Andrade, M.V. Machorro-Lazo, M.C. Revilla, R.E. Juarez, K.I. Mujica-Lopez, M.C. Moran-Moguel, M.G. Lopez-Cardona, J. Sanchez-Corona, DNA polymorphism analysis of candidate genes for type 2 diabetes mellitus in a Mexican ethnic group. Ann. Genet. 47(4), 339–348 (2004). doi: 10.1016/j.anngen.2004.05.004 PubMedCrossRefGoogle Scholar
  26. 26.
    R.M. van Dam, B. Hoebee, J.C. Seidell, M.M. Schaap, E.E. Blaak, E.J. Feskens, The insulin receptor substrate-1 Gly972Arg polymorphism is not associated with Type 2 diabetes mellitus in two population-based studies. Diabet. Med. 21(7), 752–758 (2004). doi: 10.1111/j.1464-5491.2004.01229.x PubMedCrossRefGoogle Scholar
  27. 27.
    F.E. Orkunoglu Suer, H. Mergen, E. Bolu, M. Ozata, Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Turkish with type 2 diabetes mellitus. Endocr. J. 52(5), 593–598 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    T.B. Ouederni, A. Fadiel, N. Stambouli, T.J. Scalize, H. Ben Maiz, H.K. Abid, R. Bouhaha, J. Sanchez-Corona, A. Hamza, A. Benammar-Elgaaied, Influence of socioeconomic lifestyle factors and genetic polymorphism on type 2 diabetes occurrences among Tunisian Arab and Berber groups of Djerba Island. Pharmgenomics Pers. Med. 2, 49–57 (2009)PubMedPubMedCentralGoogle Scholar
  29. 29.
    J. Rung, S. Cauchi, A. Albrechtsen, L. Shen, G. Rocheleau, C. Cavalcanti-Proenca, F. Bacot, B. Balkau, A. Belisle, K. Borch-Johnsen, G. Charpentier, C. Dina, E. Durand, P. Elliott, S. Hadjadj, M.R. Jarvelin, J. Laitinen, T. Lauritzen, M. Marre, A. Mazur, D. Meyre, A. Montpetit, C. Pisinger, B. Posner, P. Poulsen, A. Pouta, M. Prentki, R. Ribel-Madsen, A. Ruokonen, A. Sandbaek, D. Serre, J. Tichet, M. Vaxillaire, J.F. Wojtaszewski, A. Vaag, T. Hansen, C. Polychronakos, O. Pedersen, P. Froguel, R. Sladek, Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 41(10), 1110–1115 (2009). doi: 10.1038/ng.443 PubMedCrossRefGoogle Scholar
  30. 30.
    A.I. Burguete-Garcia, M. Cruz-Lopez, V. Madrid-Marina, R. Lopez-Ridaura, M. Hernandez-Avila, B. Cortina, R.E. Gomez, E. Velasco-Mondragon, Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: a candidate gene study. Metab. Clin. Exp. 59(1), 38–45 (2010). doi: 10.1016/j.metabol.2009.07.007 PubMedCrossRefGoogle Scholar
  31. 31.
    D. Bodhini, V. Radha, V. Mohan, Association study of IRS1 gene polymorphisms with type 2 diabetes in south Indians. Diabetes Technol. Ther. 13(7), 767–772 (2011). doi: 10.1089/dia.2011.0017 PubMedCrossRefGoogle Scholar
  32. 32.
    M.A. He, T. Workalemahu, M.C. Cornelis, F.B. Hu, L. Qi, Genetic variants near the IRS1 gene, physical activity and type 2 diabetes in US men and women. Diabetologia 54(6), 1579–1582 (2011). doi: 10.1007/s00125-011-2123-7 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    K. Haghani, S. Bakhtiyari, The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran. Genet Test. Mol. Biomarkers 16(11), 1270–1276 (2012). doi: 10.1089/gtmb.2012.0160 PubMedCrossRefGoogle Scholar
  34. 34.
    U. Ericson, G. Rukh, I. Stojkovic, E. Sonestedt, B. Gullberg, E. Wirfalt, P. Wallstrom, M. Orho-Melander, Sex-specific interactions between the IRS1 polymorphism and intakes of carbohydrates and fat on incident type 2 diabetes. Am. J. Clin. Nutr. 97(1), 208–216 (2013). doi: 10.3945/ajcn.112.046474 PubMedCrossRefGoogle Scholar
  35. 35.
    Y. Tang, X. Han, X. Sun, C. Lv, X. Zhang, W. Guo, Q. Ren, Y. Luo, X. Zhang, X. Zhou, L. Ji, Association study of a common variant near IRS1 with type 2 diabetes mellitus in Chinese Han population. Endocrine 43(1), 84–91 (2013). doi: 10.1007/s12020-012-9693-0 PubMedCrossRefGoogle Scholar
  36. 36.
    M. van Waas, S.J. Neggers, A.G. Uitterlinden, K. Blijdorp, I.M. van der Geest, R. Pieters, M.M. van den Heuvel-Eibrink, Treatment factors rather than genetic variation determine metabolic syndrome in childhood cancer survivors. Eur. J. Cancer 49(3), 668–675 (2013). doi: 10.1016/j.ejca.2012.09.007 PubMedCrossRefGoogle Scholar
  37. 37.
    K.K. Alharbi, I.A. Khan, A. Munshi, F.K. Alharbi, Y. Al-Sheikh, M.S. Alnbaheen, Association of the genetic variants of insulin receptor substrate 1 (IRS-1) with type 2 diabetes mellitus in a Saudi population. Endocrine 47(2), 472–477 (2014). doi: 10.1007/s12020-014-0177-2 PubMedCrossRefGoogle Scholar
  38. 38.
    U.J. Kommoju, J. Maruda, S. Kadarkarai Samy, K. Irgam, J.P. Kotla, B.M. Reddy, Association of IRS1, CAPN10, and PPARG gene polymorphisms with type 2 diabetes mellitus in the high-risk population of Hyderabad, India IRS1CAPN10PPARG2. J. Diabetes 6(6), 564–573 (2014). doi: 10.1111/1753-0407.12142 PubMedCrossRefGoogle Scholar
  39. 39.
    Z. Vergotine, Y.Y. Yako, A.P. Kengne, R.T. Erasmus, T.E. Matsha, Proliferator-activated receptor gamma Pro12Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa. BMC Genet. 15, 10 (2014). doi: 10.1186/1471-2156-15-10 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    K. Almind, G. Inoue, O. Pedersen, C.R. Kahn, A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J. Clin. Investig. 97(11), 2569–2575 (1996). doi: 10.1172/JCI118705 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    R. Kumar, N. Sharan, Analysis of codon 972 (Gly → Arg) polymorphism in IRS-1 gene in type 2 diabetic population. J. Med. Biochem. 31(3), 234–238 (2012)CrossRefGoogle Scholar
  42. 42.
    H. Arikoglu, M. Aksoy Hepdogru, D. Erkoc Kaya, A. Asik, S.H. Ipekci, F. Iscioglu, IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta. Gene 2, 579–585 (2014)Google Scholar
  43. 43.
    A. Shalimova, A. Belovol, M. Kochueva, Blood lipid spectrum in patients with type 2 diabetes depending on polymorphism of IRS-1 gene. Atherosclerosis 241(1), e226 (2015)CrossRefGoogle Scholar
  44. 44.
    J.S. Zheng, D.K. Arnett, L.D. Parnell, C.E. Smith, D. Li, I.B. Borecki, K.L. Tucker, J.M. Ordovas, C.Q. Lai, Modulation by dietary fat and carbohydrate of IRS1 association with type 2 diabetes traits in two populations of different ancestries. Diabetes Care 36(9), 2621–2627 (2013). doi: 10.2337/dc12-2607 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    J. Little, J.P. Higgins, J.P. Ioannidis, D. Moher, F. Gagnon, E. von Elm, M.J. Khoury, B. Cohen, G. Davey-Smith, J. Grimshaw, P. Scheet, M. Gwinn, R.E. Williamson, G.Y. Zou, K. Hutchings, C.Y. Johnson, V. Tait, M. Wiens, J. Golding, C. van Duijn, J. McLaughlin, A. Paterson, G. Wells, I. Fortier, M. Freedman, M. Zecevic, R. King, C. Infante-Rivard, A. Stewart, N. Birkett, Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE Statement. Hum. Genet. 125(2), 131–151 (2009). doi: 10.1007/s00439-008-0592-7 PubMedCrossRefGoogle Scholar
  46. 46.
    J. Attia, A. Thakkinstian, C. D’Este, Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56(4), 297–303 (2003)PubMedCrossRefGoogle Scholar
  47. 47.
    A. Stang, Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25(9), 603–605 (2010). doi: 10.1007/s10654-010-9491-z PubMedCrossRefGoogle Scholar
  48. 48.
    J.L. Fleiss, The statistical basis of meta-analysis. Stat. Methods Med. Res. 2(2), 121–145 (1993)PubMedCrossRefGoogle Scholar
  49. 49.
    D.G. Altman, J.M. Bland, Interaction revisited: the difference between two estimates. BMJ 326(7382), 219 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    C.B. Begg, J.A. Berlin, Publication bias and dissemination of clinical research. J. Natl Cancer Inst. 81(2), 107–115 (1989)PubMedCrossRefGoogle Scholar
  51. 51.
    M. Egger, G. Davey Smith, M. Schneider, C. Minder, Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109), 629–634 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    N. Terrin, C.H. Schmid, J. Lau, I. Olkin, Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22(13), 2113–2126 (2003). doi: 10.1002/sim.1461 PubMedCrossRefGoogle Scholar
  53. 53.
    J.L. Peters, A.J. Sutton, D.R. Jones, K.R. Abrams, L. Rushton, Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 26(25), 4544–4562 (2007). doi: 10.1002/sim.2889 PubMedCrossRefGoogle Scholar
  54. 54.
    C.J. Carpenter, A trim and fill examination of the extent of publication bias in communication research. Commun. Methods Meas. 6(1), 41–55 (2012)CrossRefGoogle Scholar
  55. 55.
    M. Stumvoll, A. Fritsche, A. Volk, N. Stefan, A. Madaus, E. Maerker, A. Teigeler, M. Koch, F. Machicao, H. Haring, The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose-tolerant humans. Diabetes 50(4), 882–885 (2001)PubMedCrossRefGoogle Scholar
  56. 56.
    A. Jellema, M.P. Zeegers, E.J. Feskens, P.C. Dagnelie, R.P. Mensink, Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 46(7), 990–995 (2003). doi: 10.1007/s00125-003-1126-4 PubMedCrossRefGoogle Scholar
  57. 57.
    J.C. Florez, M. Sjogren, N. Burtt, M. Orho-Melander, S. Schayer, M. Sun, P. Almgren, U. Lindblad, T. Tuomi, D. Gaudet, T.J. Hudson, M.J. Daly, K.G. Ardlie, J.N. Hirschhorn, D. Altshuler, L. Groop, Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes 53(12), 3313–3318 (2004)PubMedCrossRefGoogle Scholar
  58. 58.
    N. Yiannakouris, J.A. Cooper, S. Shah, F. Drenos, H.A. Ireland, J.W. Stephens, K.W. Li, R. Elkeles, I.F. Godsland, M. Kivimaki, A.D. Hingorani, M. Kumari, P.J. Talmud, S.E. Humphries, IRS1 gene variants, dysglycaemic metabolic changes and type-2 diabetes risk. Nutr. Metab. Cardiovasc. Dis. 22(12), 1024–1030 (2012). doi: 10.1016/j.numecd.2011.05.009 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qiuyan Li
    • 1
  • Yuandong Qiao
    • 1
  • Chuntao Wang
    • 1
  • Guangfa Zhang
    • 1
  • Xuelong Zhang
    • 1
  • Lidan Xu
    • 1
  1. 1.Laboratory of Medical GeneticsHarbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations