Advertisement

Endocrine

, Volume 52, Issue 2, pp 380–390 | Cite as

Lithium prevents rat steroid-related osteonecrosis of the femoral head by β-catenin activation

  • Zefeng Yu
  • Lihong FanEmail author
  • Jia Li
  • Zhaogang Ge
  • Xiaoqian Dang
  • Kunzheng Wang
Original Article

Abstract

This study explored the use of lithium to prevent rat steroid-related osteonecrosis of the femoral head (ONFH) through the modulation of the β-catenin pathway. ONFH was induced by methylprednisolone combined with lipopolysaccharide, and serum lipids were analyzed. ONFH was detected by hematoxylin–eosin staining. Micro-CT-based angiography and bone scanning were performed to analyze vessels and bone structure, respectively. Immunohistochemical staining for peroxisome proliferator-activated receptor gamma (PPARγ), bone morphogenetic protein-2 (BMP-2), and vascular endothelial growth factor (VEGF) was analyzed. Protein levels of phospho-glycogen synthase kinase-3β at Tyr-216 (p-Tyr216 GSK-3β), total glycogen synthase kinase-3β (GSK-3β) and β-catenin, as well as mRNA levels of GSK-3β and β-catenin in femoral heads, were assessed. The rate of empty bone lacunae in the femoral heads was lower in the lithium and control groups than in the model group. The lithium group showed preventive effects against steroid-related vessel loss by micro-CT-based angiography and VEGF staining. Lithium treatment improved hyperlipidemia and reduced PPARγ expression. Moreover, lithium improved steroid-related bone loss in micro-CT bone scans and BMP-2 staining analyses. Furthermore, local β-catenin was reduced in steroid-related ONFH, and lithium treatment increased β-catenin expression while reducing p-Tyr216 GSK-3β levels. The local β-catenin pathway was inhibited during steroid-related ONFH. Lithium may enhance angiogenesis and stabilize osteogenic/adipogenic homeostasis during steroid-related ONFH in rats by activating the β-catenin pathway.

Keywords

Lithium Steroid-related osteonecrosis β-Catenin pathway Angiogenesis Osteogenic/adipogenic differentiation disturbance 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81101363, 81371944 and 81572145) and the Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    J. Gagala, M. Buraczynska, T. Mazurkiewicz, A. Ksiazek, Endothelial nitric oxide synthase gene intron 4 polymorphism in non-traumatic osteonecrosis of the femoral head. Int. Orthop. 37(7), 1381–1385 (2013). doi: 10.1007/s00264-013-1892-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Y.J. Lee, J.S. Lee, E.H. Kang, Y.K. Lee, S.Y. Kim, Y.W. Song, K.H. Koo, Vascular endothelial growth factor polymorphisms in patients with steroid-induced femoral head osteonecrosis. J. Orthop. Res. 30(1), 21–27 (2012). doi: 10.1002/jor.21492 CrossRefPubMedGoogle Scholar
  3. 3.
    R.S. Weinstein, Glucocorticoid-induced osteonecrosis. Endocrine 41(2), 183–190 (2012). doi: 10.1007/s12020-011-9580-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    J.S. Lee, L.S. Lee, H.L. Rob, C.H. Kim, J.S. Jung, K.T. Suh, Alterations in the differentiation ability of mesenchymal stem cells in patients with nontraumatic osteonecrosis of the femoral head: comparative analysis according to the risk factor. J. Orthop. Res. 24(4), 604–609 (2006). doi: 10.1002/jor.20078 CrossRefPubMedGoogle Scholar
  5. 5.
    M.E. Nuttall, J.M. Gimble, Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr. Opin. Pharmacol. 4(3), 199–201 (2004)CrossRefGoogle Scholar
  6. 6.
    E. Dejana, The role of wnt signaling in physiological and pathological angiogenesis. Circ. Res. 107(8), 943–952 (2010). doi: 10.1161/circresaha.110.223750 CrossRefPubMedGoogle Scholar
  7. 7.
    E. Lammert, Developmental biology brain Wnts for blood vessels. Science 322(5905), 1195–1196 (2008). doi: 10.1126/science.1167451 CrossRefPubMedGoogle Scholar
  8. 8.
    W. Young, Review of lithium effects on brain and blood. Cell Transplant. 18(9), 951–975 (2009). doi: 10.3727/096368909x471251 CrossRefPubMedGoogle Scholar
  9. 9.
    C.M. Hedgepeth, L.J. Conrad, J. Zhang, H.C. Huang, V.M.Y. Lee, P.S. Klein, Activation of the wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185(1), 82–91 (1997). doi: 10.1006/dbio.1997.8552 CrossRefPubMedGoogle Scholar
  10. 10.
    C. Galli, M. Piemontese, S. Lumetti, E. Manfredi, G.M. Macaluso, G. Passeri, GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin. Oral Implant Res. 24(8), 921–927 (2013). doi: 10.1111/j.1600-0501.2012.02488.x CrossRefGoogle Scholar
  11. 11.
    H.-X. Li, X. Luo, R.-X. Liu, Y.-J. Yang, G.-S. Yang, Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol. Cell. Endocrinol. 291(1–2), 116–124 (2008). doi: 10.1016/j.mce.2008.05.005 CrossRefPubMedGoogle Scholar
  12. 12.
    S. Guo, K. Arai, M.F. Stins, D.-M. Chuang, E.H. Lo, Lithium upregulates vascular endothelial growth factor in brain endothelial cells and astrocytes. Stroke 40(2), 652–655 (2009). doi: 10.1161/strokeaha.108.524504 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    S. Kaga, L.J. Zhan, E. Altaf, N. Maulik, Glycogen synthase kinase-3 beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J. Mol. Cell. Cardiol. 40(1), 138–147 (2006). doi: 10.1016/j.yjmcc.200509.009 CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Sun, Y. Feng, C. Zhang, The effect of bone marrow mononuclear cells on vascularization and bone regeneration in steroid-induced osteonecrosis of the femoral head. Joint Bone Spine 76(6), 685–690 (2009). doi: 10.1016/j.jbspin.2009.04.002 CrossRefPubMedGoogle Scholar
  15. 15.
    S.C. Low, G.I. Bain, D.M. Findlay, K. Eng, E. Perilli, External and internal bone micro-architecture in normal and Kienbock’s lunates: a whole-bone micro-computed tomography study. J. Orthop. Res. 32(6), 826–833 (2014). doi: 10.1002/jor.22611 CrossRefPubMedGoogle Scholar
  16. 16.
    T. Yamamoto, T. Irisa, Y. Sugioka, K. Sueishi, Effects of pulse methylprednisolone on bone and marrow tissues—corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum. 40(11), 2055–2064 (1997). doi: 10.1002/art.1780401119 CrossRefPubMedGoogle Scholar
  17. 17.
    C. Powell, C. Chang, M.E. Gershwin, Current concepts on the pathogenesis and natural history of steroid-induced osteonecrosis. Clin. Rev. Allergy Immunol. 41(1), 102–113 (2011). doi: 10.1007/s12016-010-8217-z CrossRefPubMedGoogle Scholar
  18. 18.
    H.S. Kim, S.C. Bae, T.H. Kim, S.Y. Kim, Endothelial nitric oxide synthase gene polymorphisms and the risk of osteonecrosis of the femoral head in systemic lupus erythematosus. Int. Orthop. 37(11), 2289–2296 (2013). doi: 10.1007/s00264-013-1966-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    R. Takano-Murakami, K. Tokunaga, N. Kondo, T. Ito, H. Kitahara, M. Ito, N. Endo, Glucocorticoid inhibits bone regeneration after osteonecrosis of the femoral head in aged female rats. Tohoku J. Exp. Med. 217(1), 51–58 (2009)CrossRefPubMedGoogle Scholar
  20. 20.
    L. Yin, Y.B. Li, Y.S. Wang, Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures: mechanism of steroid-induced osteonecrosis. Chin. Med. J. 119(7), 581–588 (2006)PubMedGoogle Scholar
  21. 21.
    S. Lee, W.K. Yang, J.H. Song, Y.M. Ra, J.-H. Jeong, W. Choe, I. Kang, S.-S. Kim, J. Ha, Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem. Pharmacol. 85(7), 965–976 (2013). doi: 10.1016/j.bcp.2012.12.023 CrossRefPubMedGoogle Scholar
  22. 22.
    N.K. Satija, D. Sharma, F. Afrin, R.P. Tripathi, G. Gangenahalli, High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. Plos One 8(1), e55769 (2013). doi: 10.1371/journal.pone.0055769 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    K. Hughes, E. Nikolakaki, S.E. Plyte, N.F. Totty, J.R. Woodgett, Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 12(2), 803–808 (1993)PubMedPubMedCentralGoogle Scholar
  24. 24.
    J.C. Garza, M. Guo, W. Zhang, X.Y. Lu, Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3 beta/beta-catenin signaling. Mol. Psychiatry 17(8), 790–808 (2012). doi: 10.1038/mp.2011.161 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    S. Okazaki, Y. Nishitani, S. Nagoya, M. Kaya, T. Yamashita, H. Matsumoto, Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology 48(3), 227–232 (2009). doi: 10.1093/rheumatology/ken462 CrossRefPubMedGoogle Scholar
  26. 26.
    X.B. Zhang, J.P. Gaspard, D.C. Chung, Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61(16), 6050–6054 (2001)PubMedGoogle Scholar
  27. 27.
    V. Easwaran, S.H. Lee, L. Inge, L. Guo, C. Goldbeck, E. Garrett, M. Wiesmann, P.A. Garcia, J.H. Fuller, V. Chan, F. Randazzo, R. Gundel, R.S. Warren, J. Escobedo, S.L. Aukerman, R.N. Taylor, W.J. Fantl, Beta-catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 63(12), 3145–3153 (2003)PubMedGoogle Scholar
  28. 28.
    M. Thirunavukkarasu, Z. Han, L. Zhan, S.V. Penumathsa, V.P. Menon, N. Maulik, Adeno-sh-beta-catenin abolishes ischemic preconditioning-mediated cardioprotection by downregulation of its target genes VEGF, Bcl-2, and survivin in ischemic rat myocardium. Antioxid. Redox Signal. 10(8), 1475–1484 (2008). doi: 10.1089/ars.2008.2042 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    T.-H. Kim, J.M. Hong, F.K. Park, S.-Y. Kim, Peroxosome proliferator-activated receptor-gamma gene polymorphisms are not associated with ostenecrosis of the femoral head on the Korean population. Mol. Cells 24(3), 388–393 (2007)PubMedGoogle Scholar
  30. 30.
    J. Watt, J.J. Schlezinger, Structurally-diverse, PPARgamma-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology 331, 66–77 (2015). doi: 10.1016/j.tox.2015.03.006 CrossRefPubMedGoogle Scholar
  31. 31.
    T.K. Sampath, J.E. Coughlin, R.M. Whetstone, D. Banach, C. Corbett, R.J. Ridge, E. Ozkaynak, H. Oppermann, D.C. Rueger, Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, 2 members of the transforming growth-factor-beta superfamily. J. Biol. Chem. 265(22), 13198–13205 (1990)PubMedGoogle Scholar
  32. 32.
    S.E. Ross, N. Hemati, K.A. Longo, C.N. Bennett, P.C. Lucas, R.L. Erickson, O.A. MacDougald, Inhibition of adipogenesis by Wnt signaling. Science 289(5481), 950–953 (2000). doi: 10.1126/science.289.5481.950 CrossRefPubMedGoogle Scholar
  33. 33.
    J.J. Liu, S.R. Farmer, Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis—a glycogen synthase kinase 3 beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 279(43), 45020–45027 (2004). doi: 10.1074/jbc.M407050200 CrossRefPubMedGoogle Scholar
  34. 34.
    C.N. Bennett, S.E. Ross, K.A. Longo, L. Bajnok, N. Hemati, K.W. Johnson, S.D. Harrison, O.A. MacDougald, Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277(34), 30998–31004 (2002). doi: 10.1074/jbc.M204527200 CrossRefPubMedGoogle Scholar
  35. 35.
    E.E. Beier, T.J. Sheu, T. Buckley, K. Yukata, R. O’Keefe, M.J. Zuscik, J.E. Puzas, Inhibition of beta-catenin signaling by Pb leads to incomplete fracture healing. J. Orthop. Res. 32(11), 1397–1405 (2014). doi: 10.1002/jor.22677 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zefeng Yu
    • 1
  • Lihong Fan
    • 1
    Email author
  • Jia Li
    • 1
  • Zhaogang Ge
    • 1
  • Xiaoqian Dang
    • 1
  • Kunzheng Wang
    • 1
  1. 1.Department of OrthopedicsThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations