, Volume 51, Issue 3, pp 456–468 | Cite as

The multimerization and secretion of adiponectin are regulated by TNF-alpha

  • Yiduo He
  • Linfang Lu
  • Xuan Wei
  • Dan Jin
  • Tao Qian
  • An Yu
  • Jun Sun
  • Jiesheng Cui
  • Zaiqing YangEmail author
Original Article


Obesity is often associated with insulin resistance, mild systemic inflammation, and decreased blood adiponectin. However, some adipokines are increased in the adipose tissue of obese individuals, and whether these adipokines are directly related to the reductions in serum adiponectin levels in an autocrine or paracrine manner remains unknown. This study indicates that the tumor necrosis factor alpha (TNF-α) suppresses the multimerization and secretion of adiponectin both in vitro and in vivo. Additionally, TNF-α remarkably suppressed the expression of the ER-resident chaperone proteins ERO1-La, DsbA-L, and ERp44. Overexpression of the transcription factor PPARγ antagonized the suppressive effect of TNF-α on ERO1-La and DsbA-L expressions. Further study revealed that PPARγ enhanced the transcription of ERO1-La and DsbA-L by directly binding to the PPRE element of ERO1-La and DsbA-L promoters. TNF-α treatment decreased this binding activity. Furthermore, TNF-α treatment enhanced the interaction between adiponectin and ERp44. In this study, we show that TNF-α impairs adiponectin multimerization and consequently decreases adiponectin secretion by altering disulfide bond modification in the endoplasmic reticulum. Altered adiponectin multimerization could explain declined adiponectin levels and altered distribution of adiponectin complexes in the plasma of obese insulin-resistant individuals.


Obesity Adiponectin Multimerization Secretion PPARγ 



This work was supported by the grants from the National key Basic Research Program of China (2012CB124702), 948 Program (2012-S13, 2013-S15), Specialized Research Fund for the Doctoral Program of Higher Education (20110146130002), Program of National Natural Science Foundation of China (31172093), the National Science Foundation for Fostering Talents in Basic Research (J1103510), and the Fundamental Research Funds for the Central Universities (2013PY005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding this article.

Supplementary material

12020_2015_741_MOESM1_ESM.tif (768 kb)
Supplementary data-Fig. s1 TNF-alpha suppresses protein level of ERO1-La and DsbA-L in a dose- and time-dependent manner. The cells were lysed and subjected to Western blot to dose–response and time-course analysis of ERO1-La, DsbA-L, PPARγ, and actin protein content in adipocytes, the densitometric analysis of Western blot was made to compare the relative protein level of (a) ERO1-La, (b) DsbA-L and (c) PPARγ under the dose–response and time-course treatment of TNF-alpha. The results are presented as the mean ± SEM of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 Supplementary material 1 (TIFF 767 kb)


  1. 1.
    Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka et al., Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda et al., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    J.J. Diez, P. Iglesias, The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148, 293–300 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    M. Chandran, S.A. Phillips, T. Ciaraldi, R.R. Henry, Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442–2450 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    M. Matsuda, I. Shimomura, M. Sata, Y. Arita, M. Nishida, N. Maeda, M. Kumada, Y. Okamoto, H. Nagaretani, H. Nishizawa et al., Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem. 277, 37487–37491 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh et al., Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    A.S. Lihn, B. Richelsen, S.B. Pedersen, S.B. Haugaard, G.S. Rathje, S. Madsbad, O. Andersen, Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am. J. Physiol. Endocrinol. Metab. 285, E1072–1080 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    T. Hajri, H. Tao, J. Wattacheril, P. Marks-Shulman, N.N. Abumrad, Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-alpha and interleukin-6. Am. J. Physiol. Endocrinol. Metab. 300, E350–360 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    P.A. Kern, S. Ranganathan, C. Li, L. Wood, G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–751 (2001)PubMedGoogle Scholar
  10. 10.
    S. Kim, N. Moustaid-Moussa, Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130, 3110S–3115S (2000)PubMedGoogle Scholar
  11. 11.
    E. Maury, S.M. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1–16 (2010)CrossRefPubMedGoogle Scholar
  12. 12.
    J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)CrossRefPubMedGoogle Scholar
  14. 14.
    P.A. Kern, G.B. Di Gregorio, T. Lu, N. Rassouli, G. Ranganathan, Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    T.S. Tsao, H.E. Murrey, C. Hug, D.H. Lee, H.F. Lodish, Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277, 29359–29362 (2002)CrossRefPubMedGoogle Scholar
  17. 17.
    U.B. Pajvani, M. Hawkins, T.P. Combs, M.W. Rajala, T. Doebber, J.P. Berger, J.A. Wagner, M. Wu, A. Knopps, A.H. Xiang et al., Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    A.A. Richards, T. Stephens, H.K. Charlton, A. Jones, G.A. Macdonald, J.B. Prins, J.P. Whitehead, Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20, 1673–1687 (2006)CrossRefPubMedGoogle Scholar
  19. 19.
    L. Qiang, H. Wang, S.R. Farmer, Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol. Cell. Biol. 27, 4698–4707 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Z.V. Wang, P.E. Scherer, DsbA-L is a versatile player in adiponectin secretion. Proc. Natl. Acad. Sci. USA 105, 18077–18078 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Z.V. Wang, T.D. Schraw, J.Y. Kim, T. Khan, M.W. Rajala, A. Follenzi, P.E. Scherer, Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol. Cell. Biol. 27, 3716–3731 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    J.Y. Lim, W.H. Kim, S.I. Park, GO6976 prevents TNF-alpha-induced suppression of adiponectin expression in 3T3-L1 adipocytes: putative involvement of protein kinase C. FEBS Lett. 582, 3473–3478 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    D. Konrad, A. Rudich, E.J. Schoenle, Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 50, 833–839 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada, Y. Abe, T. Funahashi, Y. Matsuzawa, Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–31 (2004)PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Y. Li, P. Wang, Y. Zhuang, H. Lin, Y. Li, L. Liu, Q. Meng, T. Cui, J. Liu, Z. Li, Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Lett. 585, 1735–1740 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    J.V. Huang, C.R. Greyson, G.G. Schwartz, PPAR-gamma as a therapeutic target in cardiovascular disease: evidence and uncertainty. J. Lipid Res. 53, 1738–1754 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    E.E. Kershaw, M. Schupp, H.P. Guan, N.P. Gardner, M.A. Lazar, J.S. Flier, PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 293, E1736–1745 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    S. Rodriguez-Cuenca, S. Carobbio, V.R. Velagapudi, N. Barbarroja, J.M. Moreno-Navarrete, F.J. Tinahones, J.M. Fernandez-Real, M. Oresic, A. Vidal-Puig, Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Mol. Cell. Biol. 32, 1555–1565 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    D. Jin, J. Sun, J. Huang, Y. He, A. Yu, X. Yu, Z. Yang, TNF-alpha reduces g0s2 expression and stimulates lipolysis through PPAR-gamma inhibition in 3T3-L1 adipocytes. Cytokine 69, 196–205 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    M. Iwabu, T. Yamauchi, M. Okada-Iwabu, K. Sato, T. Nakagawa, M. Funata, M. Yamaguchi, S. Namiki, R. Nakayama, M. Tabata et al., Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464, 1313–1319 (2010)CrossRefPubMedGoogle Scholar
  31. 31.
    Z. Lin, H. Tian, K.S. Lam, S. Lin, R.C. Hoo, M. Konishi, N. Itoh, Y. Wang, S.R. Bornstein, A. Xu et al., Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013)CrossRefPubMedGoogle Scholar
  32. 32.
    M. Okada-Iwabu, T. Yamauchi, M. Iwabu, T. Honma, K. Hamagami, K. Matsuda, M. Yamaguchi, H. Tanabe, T. Kimura-Someya, M. Shirouzu et al., A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    C.C. Juan, T.Y. Chuang, C.L. Chang, S.W. Huang, L.T. Ho, Endothelin-1 regulates adiponectin gene expression and secretion in 3T3-L1 adipocytes via distinct signaling pathways. Endocrinology 148, 1835–1842 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    R.M. Blumer, C.P. van Roomen, A.J. Meijer, J.H. Houben-Weerts, H.P. Sauerwein, P.F. Dubbelhuis, Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism 57, 1655–1662 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    K.Y. Kim, J.K. Kim, J.H. Jeon, S.R. Yoon, I. Choi, Y. Yang, c-Jun N-terminal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 327, 460–467 (2005)CrossRefPubMedGoogle Scholar
  37. 37.
    S.Y. Gilady, M. Bui, E.M. Lynes, M.D. Benson, R. Watts, J.E. Vance, T. Simmen, Ero1 alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619–629 (2010)PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yiduo He
    • 1
  • Linfang Lu
    • 1
  • Xuan Wei
    • 1
  • Dan Jin
    • 1
  • Tao Qian
    • 1
  • An Yu
    • 1
  • Jun Sun
    • 1
  • Jiesheng Cui
    • 1
  • Zaiqing Yang
    • 1
    Email author
  1. 1.Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations