, Volume 51, Issue 2, pp 245–255 | Cite as

Maternal circulating levels of some metabolic syndrome biomarkers in gestational diabetes mellitus

  • Ali KhosrowbeygiEmail author
  • Najmeh Shiamizadeh
  • Nima Taghizadeh
Original Article


The aims of the present study were to explore serum levels of lipid profile, atherogenic indexes LDL-C/HDL-C, TG/HDL-C, and TC/HDL-C, bilirubin, adiponectin, pseudocholinesterase, activities of gamma-glutamyltransferase (GGT), adenosine deaminase (ADA), and α-amylase, insulin resistance using homeostasis model assessment of insulin resistance (HOMA-IR) formula, and assessment of correlations between them in gestational diabetes mellitus (GDM) compared with normal pregnancy. A cross-sectional study was designed. The patients consisted of 30 women with GDM. The normal group consisted of 30 healthy pregnant women. The Mann–Whitney U test and Spearman’s correlation analysis were used for statistical analysis. A p value less than 0.05 was considered significant. Serum activities of enzymes GGT (p = 0.001) and ADA (p = 0.02) were significantly higher in GDM compared with normal pregnancy, while pseudocholinesterase were significantly decreased (p = 0.02). However, activity of enzyme α-amylase did not show significant difference between two groups (p = 0.75). Serum levels of both HDL-C and adiponectin were significantly decreased in GDM group (p = 0.001). The atherogenic indexes and the HOMA-IR index were significantly higher in GDM (p = 0.001). Serum activity of ADA showed positive correlation with total cholesterol (TC) (r = 0.46, p = 0.01) and CRP (r = 0.66, p = 0.001) in GDM group. Serum levels of total bilirubin correlated negatively with both ADA (r = −0.38, p = 0.04) and triglyceride (r = −0.45, p = 0.01) in women with GDM. Serum activity of GGT correlated positively with LDL-C (r = 0.48, p = 0.01) and TC (r = 0.52, p = 0.003) in GDM group. Increased atherogenic indexes, ADA, GGT, and decreased pseudocholinesterase might be risk factors for GDM.


Adenosine deaminase Amylase Atherogenic index Gamma-glutamyltransferase Insulin resistance Gestational diabetes mellitus 



This research was supported by a grant from Lorestan University of Medical Sciences (No. 61–91).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    M. Aslan, O. Celik, N. Celik, I. Turkcuoglu, E. Yilmaz, A. Karaer, Y. Simsek, E. Celik, S. Aydin, Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine 41, 424–429 (2012)CrossRefPubMedGoogle Scholar
  2. 2.
    M.I. Yeral, A.S. Ozgu-Erdinc, D. Uygur, K.D. Seckin, M.F. Karsli, A.N. Danisman, Prediction of gestational diabetes mellitus in the first trimester, comparison of fasting plasma glucose, two-step and one-step methods: a prospective randomized controlled trial. Endocrine 46, 512–518 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    J.G. Lee, S.W. Park, B.M. Cho, S. Lee, Y.J. Kim, D.W. Jeong, Y.H. Yi, Y.H. Cho, Serum amylase and risk of the metabolic syndrome in Korean adults. Clin. Chim. Acta 412, 1848–1853 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Nakajima, T. Nemoto, T. Muneyuki, M. Kakei, H. Fuchigami, H. Munakata, Low serum amylase in association with metabolic syndrome and diabetes: a community-based study. Cardiovasc. Diabetol. 10, 34 (2011). doi: 10.1186/1475-2840-10-34 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Y. Zhao, J. Zhang, J. Zhang, J. Wu, Y. Chen, Metabolic syndrome and diabetes are associated with low serum amylase in a Chinese asymptomatic population. Scand. J. Clin. Lab. Invest. 74, 235–239 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    J. Yao, Y. Zhao, J. Zhang, Y. Hong, H. Lu, J. Wu, Serum amylase levels are decreased in Chinese non-alcoholic fatty liver disease patients. Lipids Health Dis. 13, 185 (2014). doi: 10.1186/1476-511X-13-185 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    K. Ryckman, C. Spracklen, C. Smith, J. Robinson, A. Saftlas, Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG 122, 643–651 (2015)CrossRefPubMedGoogle Scholar
  8. 8.
    P.C. Tan, S. Mubarak, S.Z. Omar, Gamma-glutamyltransferase level in pregnancy is an independent risk factor for gestational diabetes mellitus. J. Obstet. Gynaecol. Res. 34, 512–517 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    I. Alanbay, H. Coksuer, M. Ercan, U. Keskin, E. Karasahin, M. Ozturk, S. Tapan, O. Ozturk, I. Kurt, A. Ergun, Can serum gamma-glutamyltransferase levels be useful at diagnosing gestational diabetes mellitus? Gynecol. Endocrinol. 28, 208–211 (2012)CrossRefPubMedGoogle Scholar
  10. 10.
    P.C. Tan, A.Z. Aziz, I.S. Ismail, S.Z. Omar, Gamma-glutamyltransferase, alanine transaminase and aspartate transaminase levels and the diagnosis of gestational diabetes mellitus. Clin. Biochem. 45, 1192–1196 (2012)CrossRefPubMedGoogle Scholar
  11. 11.
    H. Liu, M. Shao-Gang, C. Liang, B. Feng, X. Wei, Surrogate markers of the kidney and liver in the assessment of gestational diabetes mellitus and fetal outcome. J. Clin. Diagn. Res. 9, OC14-7 (2015). doi: 10.7860/JCDR/2015/11585.5475 PubMedGoogle Scholar
  12. 12.
    M.G. Gohel, A.N. Chacko, Serum GGT activity and hsCRP level in patients with type 2 diabetes mellitus with good and poor glycemic control: an evidence linking oxidative stress, inflammation and glycemic control. J. Diabetes Metab. Disord. 12, 56 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    S.Y. Lee, E. Sung, Y. Chang, Elevated serum gamma-glutamyltransferase is a strong marker of insulin resistance in obese children. Int. J. Endocrinol. 2013, 578693 (2013). doi: 10.1155/2013/578693 PubMedPubMedCentralGoogle Scholar
  14. 14.
    A. Sunto, K. Mochizuki, R. Miyauchi, Y. Misaki, M. Shimada, N. Kasezawa, K. Tohyama, T. Goda, Serum γ-GTP activity is closely associated with serum CRP levels in non-overweight and overweight middle-aged Japanese men. J. Nutr. Sci. Vitaminol (Tokyo) 59, 108–114 (2013)CrossRefGoogle Scholar
  15. 15.
    K.S. De Bona, G. Bonfanti, P.E. Bitencourt, L.O. Cargnelutti, P.S. da Silva, L. De Lucca, V.C. Pimentel, E. Tatsch, T.L. Gonçalves, M. Premaor, R.N. Moresco, M.B. Moretto, Butyrylcholinesterase and γ-glutamyltransferase activities and oxidative stress markers are altered in metabolic syndrome, but are not affected by body mass index. Inflammation 36, 1539–1547 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    N.G. Vallianou, A.A. Evangelopoulos, V. Bountziouka, M.S. Bonou, C. Katsagoni, E.D. Vogiatzakis, P.C. Avgerinos, J. Barbetseas, D.B. Panagiotakos, Association of butyrylcholinesterase with cardiometabolic risk factors among apparently healthy adults. J. Cardiovasc. Med. (Hagerstown) 15, 377–383 (2014)CrossRefGoogle Scholar
  17. 17.
    L.P. Cocelli, E. Dikensoy, H. Cicek, Y. Ibar, S. Kul, O. Balat, Pseudocholinesterase in gestational diabetes: positive correlation with LDL and negative correlation with triglyceride. Arch. Gynecol. Obstet. 286, 43–49 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    L.O. Guimarães, F.A. de Andrade, G.F. Bono, T.E. Setoguchi, M.B. Brandão, E.A. Chautard-Freire-Maia, I.C. Dos Santos, G. Picheth, A.C. Faria, R.R. Réa, R.L. Souza, L. Furtado-Alle, Gestational diabetes mellitus (GDM) decreases butyrylcholinesterase (BChE) activity and changes its relationship with lipids. Genet. Mol. Biol. 37, 1–6 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    R. Wang, G. Yang, Z. Lyu, J. Dou, W. Gu, L. Zang, N. Jin, J. Du, J. Ouyang, Q. Guo, X. Wang, L. Yang, J. Ba, Y. Mu, A correlation study between serum direct bilirubin and lipid in type 2 diabetic patients. Zhonghua. Nei. Ke. Za. Zhi. 53, 783–787 (2014)PubMedGoogle Scholar
  20. 20.
    M. Mokhtari, M. Hashemi, M. Yaghmaei, F. Molashahi, A. Shikhzadeh, A. Niazi, S. Ghavami, Serum adenosine deaminase activity in gestational diabetes mellitus and normal pregnancy. Arch. Gynecol. Obstet. 281, 623–626 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    C.J. Homko, New recommendations for the diagnosis of diabetes in pregnancy. Curr. Diabetes Rep. 11, 1–3 (2011)CrossRefGoogle Scholar
  22. 22.
    W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–503 (1972)PubMedGoogle Scholar
  23. 23.
    L. Zhang, S. Chen, A. Deng, X. Liu, Y. Liang, X. Shao, M. Sun, H. Zou, Association between lipid ratios and insulin resistance in a Chinese population. PLoS One 10, e0116110 (2015). doi: 10.1371/journal.pone.0116110 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    D. Wang, S. Xu, H. Chen, L. Zhong, Z. Wang, The associations between triglyceride to high-density lipoprotein cholesterol ratios and the risks of gestational diabetes mellitus and large-for-gestational-age infant. Clin. Endocrinol. (Oxf) (2015). doi: 10.1111/cen.12742 PubMedGoogle Scholar
  25. 25.
    X. Jia, S. Wang, N. Ma, X. Li, L. Guo, X. Liu, T. Dong, Y. Liu, Q. Lu, Comparative analysis of vaspin in pregnant women with and without gestational diabetes mellitus and healthy non-pregnant women. Endocrine 48, 533–540 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    S.M. Li, W.F. Wang, L.H. Zhou, L. Ma, Y. An, W.J. Xu, T.H. Li, Y.H. Yu, D.S. Li, Y. Liu, Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine 48, 519–527 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    E.M. Akbas, A. Timuroglu, A. Ozcicek, F. Ozcicek, L. Demirtas, A. Gungor, N. Akbas, Association of uric acid, atherogenic index of plasma and albuminuria in diabetes mellitus. Int. J. Clin. Exp. Med. 7, 5737–5743 (2014)PubMedPubMedCentralGoogle Scholar
  28. 28.
    E. Oda, Cross-sectional and longitudinal associations between serum bilirubin and dyslipidemia in a health screening population. Atherosclerosis 239, 31–37 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    Y.G. Sargisova, N.A. Andreasyan, H.L. Hayrapetyan, H.A. Harutyunyan, Nitric oxide—an activating factor of adenosine deaminase 2 in vitro. Biochemistry (Mosc) 77, 92–97 (2012)CrossRefGoogle Scholar
  30. 30.
    V.K. Khemka, D. Bagchi, A. Ghosh, O. Sen, A. Bir, S. Chakrabarti, A. Banerjee, Raised serum adenosine deaminase level in nonobese type 2 diabetes mellitus. ScientificWorldJournal 2013, 404320 (2013). doi: 10.1155/2013/404320 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    L. Tao, E. Gao, X. Jiao, Y. Yuan, S. Li, T.A. Christopher, B.L. Lopez, W. Koch, L. Chan, B.J. Goldstein, X.L. Ma, Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115, 1408–1416 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    A. Khosrowbeygi, H. Ahmadvand, Positive correlation between serum levels of adiponectin and homocysteine in pre-eclampsia. J. Obstet. Gynaecol. Res. 39, 641–646 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    R. Yao, Y. Zhou, Y. He, Y. Jiang, P. Liu, L. Ye, Z. Zheng, W.B. Lau, Y. Cao, Z. Zeng, Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress. Exp. Ther. Med. 9, 131–136 (2015)PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ali Khosrowbeygi
    • 1
    • 2
    Email author
  • Najmeh Shiamizadeh
    • 1
  • Nima Taghizadeh
    • 1
  1. 1.School of MedicineLorestan University of Medical SciencesKhorramabadIran
  2. 2.Department of Biochemistry, School of MedicineArak University of Medical SciencesArakIran

Personalised recommendations