, Volume 50, Issue 3, pp 764–776 | Cite as

Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats

  • Ivana M. Medigović
  • Jasmina B. Živanović
  • Vladimir Z. Ajdžanović
  • Aleksandra L. Nikolić-Kokić
  • Sanja D. Stanković
  • Svetlana L. Trifunović
  • Verica Lj. Milošević
  • Nataša M. Nestorović
Original Article


The aim of this study was to assess the effects of genistein (G) and daidzein (D) on the histological, hormonal, and functional parameters of the pituitary-ovarian axis in middle-aged female rats, and to compare these effects with the effects of estradiol (E), commonly used in the prevention and treatment of menopausal symptoms. Middle-aged (12 month old) Wistar female rats subcutaneously received 35 mg/kg of G, or 35 mg/kg of D, or 0.625 mg/kg of E every day for 4 weeks. Each of the treated groups had a corresponding control group. An intact control group was also established. G and D did not change the intracellular protein content within gonadotropic and lactotropic cells, but vacuolization was observed in all the cell types. In contrast, E caused an inhibition of gonadotropic and stimulation of lactotropic cells. Also, ovaries of middle-aged female rats exposed to G or D have more healthy primordial and primary follicles and less atretic follicles. E treatment in the ovaries had a mostly negative effect, which is reflected by the increased number of atretic follicles in all tested classes. G and D provoked decrease in CuZnSOD and CAT activity, while E treatment increased MnSOD and decreased CuZnSOD and GSHPx activity. All the treatments increased serum estradiol and decreased testosterone levels, while D and E increased the serum progesterone level. In conclusion, soy phytoestrogens exhibited beneficial effects on pituitary-ovarian function in middle-aged female rats, as compared to estradiol.


Genistein Daidzein Estradiol Pituitary-ovarian function 



This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant Number 173009. The authors wish to express their sincere gratitude to Olympus d.o.o. Belgrade, Serbia, for technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Guida, F. Zullo, B. Buonomo, M.L. Marra, V. Palatucci, R. Pascale, F. Visconti, G. Guerra, M. Spinelli, A. Di Spiezio Sardo, Estrogens and neuropeptides in postmenopausal women, un update. Transl. Med. UniSa 3, 25–41 (2012)PubMedCentralPubMedGoogle Scholar
  2. 2.
    A. Cagnacci, M. Cannoletta, F. Palma, R. Zanin, A. Xholli, A. Volpe, Menopausal symptoms and risk factors for cardiovascular disease in postmenopause. Climacteric 15, 157–162 (2012)CrossRefPubMedGoogle Scholar
  3. 3.
    A.J. Welton, M.R. Vickers, J. Kim, D. Ford, B.A. Lawton, A.H. Maclennan, S.K. Meredith, J. Martin, T.W. Meade, Health related quality of life after combined hormone replacement therapy randomised controlled trial. BMJ 337, a1190 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    J.E. Rossouw, G.L. Anderson, R.L. Prentice, A.Z. LaCroix, C. Kooperberg, M.L. Stefanick, R.D. Jackson, S.A. Beresford, B.V. Howard, K.C. Johnson, J.M. Kotchen, J. Ockene, Writing Group for the Women’s Health Initiative Investigators, Risks and benefits of estrogen plus progestin in healthy postmenopausal women, principal results. From the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    L.L. Schierbeck, L. Rejnmark, C.L. Tofteng, L. Stilgren, P. Eiken, L. Mosekilde, L. Køber, J.E. Jensen, Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women, randomised trial. BMJ 345, e6409 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    J.E. Manson, R.T. Chlebowski, M.L. Stefanick, A.K. Aragaki, J.E. Rossouw, Anderson G. PrenticeRL, B.V. Howard, C.A. Thomson, A.Z. LaCroix, J. Wactawski-Wende, R.D. Jackson, M. Limacher, K.L. Margolis, S. Wassertheil-Smoller, S.A. Beresford, J.A. Cauley, C.B. Eaton, M. Gass, J. Hsia, K.C. Johnson, C. Kooperberg, L.H. Kuller, C.E. Lewis, S. Liu, L.W. Martin, J.K. Ockene, M.J. O’Sullivan, L.H. Powell, M.S. Simon et al., Menopausal hormone therapy and health outcomes during theintervention and extended poststopping phases of the Women’s HealthInitiative randomized trials. JAMA 310, 1353–1368 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Lagro-Janssen, M.W. Knufing, L. Schreurs, C. van Weel, Significant fall in hormone replacement therapy prescription in general practice. Fam. Pract. 27, 424–429 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    M. Bedell, The pros and cons of plant estrogens for menopause. J. Steroid Biochem. Mol. Biol. 139, 225–236 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    V.S. Lagari, S. Levis, Phytoestrogens for menopausal bone loss and climacteric symptoms. J. Steroid Biochem. Mol. Biol. 139, 294–301 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    G.G. Kuiper, J.G. Lemmen, B. Carlsson, J.C. Corton, S.H. Safe, P.T. Van Der Saag, B. Van Der Burg, J. Gustafsson, Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139, 4252–4263 (1998)PubMedGoogle Scholar
  11. 11.
    V. Ajdžanović, I. Medigović, J. Zivanović, M. Mojić, V. Milošević, Membrane steroid receptor-mediated action of soy isoflavones, tip of the iceberg. J. Membr. Biol. 248, 1–6 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    V.Z. Ajdžanović, I.M. Medigović, J.B. Pantelić, V.L.J. Milošević, Soy isoflavones and cellular mechanics. J. Bioenerg. Biomembr. 46, 99–107 (2014)CrossRefPubMedGoogle Scholar
  13. 13.
    L. Pilšáková, I. Riečanský, F. Jagla, The physiological actions of isoflavone phytoestrogens. Physiol. Res. 59, 651–664 (2010)PubMedGoogle Scholar
  14. 14.
    E. Poluzzi, C. Piccinni, E. Raschi, A. Rampa, M. Recanatini, P.F. De, Phytoestrogens in postmenopause, the state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem. 21, 417–436 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    W.N. Jefferson, E. Padilla-Banks, R.R. Newbold, Disruption of the developing female reproductive system by phytoestrogens, genistein as an example. Mol. Nutr. Food Res. 51, 832–844 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    I. Medigović, M. Manojlović-Stojanoski, S. Trifunović, N. Ristić, V. Milošević, D. Zikić, N. Nestorović, Effects of genistein on gonadotropic cells in immature female rats. Acta Histochem. 114, 270–275 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    I. Medigović, N. Ristić, S. Trifunović, M. Manojlović-Stojanoski, V. Milošević, D. Zikić, N. Nestorović, Genistein affects ovarian folliculogenesis, a stereological study. Microsc. Res. Tech. 75, 1691–1699 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    J. Hsia, R.D. Langer, J.E. Manson, L. Kuller, K.C. Johnson, S.L. Hendrix, M. Pettinger, S.R. Heckbert, N. Greep, S. Crawford, C.B. Eaton, J.B. Kostis, P. Caralis, R. Prentice, Conjugated equine estrogens and coronary heart disease: the Women’s Health Initiative. Women’s Health Initiative Investigators. Arch. Intern. Med. 166, 357–365 (2006)CrossRefPubMedGoogle Scholar
  19. 19.
    M.M. Abdel-Dayem, M.S. Elgendy, Effects of chronic estradiol treatment on the thyroid gland structure and function of ovariectomized rats. BMC Res. Notes 30, 173 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Neal-Perry, E. Nejat, C. Dicken, The neuroendocrine physiology of female reproductive aging, an update. Maturitas 67, 34–38 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    I. Medigović, N. Ristić, J. Živanović, B. Šošić-Jurjević, B. Filipović, V. Milošević, N. Nestorović, Diosgenin does not express estrogenic activity, a uterotrophic assay. Can. J. Physiol. Pharmacol. 92, 292–298 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    D. Doerge, D. Sheehan, Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 110, 349–353 (2002)PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    J.H. Mitchell, P.T. Gardner, D.B. McPhail, P.C. Morrice, A.R. Collins, G.G. Duthie, Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch. Biochem. Biophys. 360, 142–148 (1998)CrossRefPubMedGoogle Scholar
  24. 24.
    B. Sosic-Jurjevic, B. Filipovic, V. Milosevic, N. Nestorovic, M. Manojlovic-Stojanoski, B. Brkic, M. Sekulic, Chronic estradiol exposure modulates thyroid structure and decreases T4 and T3 serum levels in middle-aged female rats. Horm. Res. 63, 48–54 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    S. Trifunović, M. Manojlović-Stojanoski, V. Ajdžanović, N. Nestorović, N. Ristić, I. Medigović, V. Milošević, Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats. Endocrine 47, 869–877 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    M. Miler, B. Šošić-Jurjević, N. Nestorović, N. Ristić, I. Medigović, S. Savin, V. Milošević, Morphological and functional changes in pituitary-thyroid axis following prolonged exposure of female rats to constant light. J. Morphol. 275, 1161–1172 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    H.J. Gundersen, E.B. Jensen, The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229–263 (1987)CrossRefPubMedGoogle Scholar
  28. 28.
    K.A. Dorph-Petersen, J.R. Nyengaard, H.J.G. Gundersen, Tissue shrinkage and unbiased stereological estimation of particle number and size. J. Microsc. 204, 232–246 (2001)CrossRefPubMedGoogle Scholar
  29. 29.
    H.J. Gundersen, Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 3–45 (1986)CrossRefPubMedGoogle Scholar
  30. 30.
    M. Manojlović-Stojanoski, N. Nestorović, N. Ristić, S. Trifunović, B. Filipović, B. Šošić-Jurjević, M. Sekulić, Unbiased stereological estimation of the rat fetal pituitary volume and of the total number and volume of TSH cells after maternal dexamethasone application. Microsc. Res. Tech. 73, 1077–1085 (2010)CrossRefPubMedGoogle Scholar
  31. 31.
    H.P. Misra, I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972)PubMedGoogle Scholar
  32. 32.
    A. Claiborne, Assay for catalase in handbook of methods for oxygen radical research (CRC Press, Boca Raton, 1985), pp. 283–284Google Scholar
  33. 33.
    D.E. Paglia, W.N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 74–77 (1967)Google Scholar
  34. 34.
    D. Glatzle, J.P. Vuilleumier, F. Weber, K. Decker, Glutathione reductase test with whole blood a convenient procedure for the assessment of the riboflavin status in humans. Experientia 30, 665–668 (1974)CrossRefPubMedGoogle Scholar
  35. 35.
    O.H. Lowry, N.L. Rosebrough, A.L. Farr, R.I. Randall, Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  36. 36.
    A. Ferrari, Soy extract phytoestrogens with high dose of isoflavones for menopausal symptoms. J. Obstet. Gynaecol. Res. 35, 1083–1090 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    C.D. Allred, K.F. Allred, Y.H. Ju, T.S. Goeppinger, D.R. Doerge, W.G. Helferich, Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25, 1649–1657 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    M. Du, X. Yang, J.A. Hartman, P.S. Cooke, D.R. Doerge, Y.H. Ju, W.G. Helferich, Low-dose dietary genistein negates the therapeutic effect of tamoxifen in athymic nude mice. Carcinogenesis 33, 895–901 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Y. Liu, L. Hilakivi-Clarke, Y. Zhang, X. Wang, Y.X. Pan, J. Xuan, S.C. Fleck, D.R. Doerge, W.G. Helferich, Isoflavones in soy flour diet have different effects on whole-genome expression patterns than purified isoflavone mix in human MCF-7 breast tumors in ovariectomized athymic nude mice. Mol. Nutr. Food Res. (2015). doi: 10.1002/mnfr.201500028 PubMedCentralGoogle Scholar
  40. 40.
    C.R. Anzalone, L.S. Hong, J.K. Lu, P.S. LaPolt, Influences of age and ovarian follicular reserve on estrous cycle patterns, ovulation, and hormone secretion in the Long-Evans rat. Biol. Reprod. 64, 1056–1062 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    M. González, R. Reyes, C. Damas, R. Alonso, A.R. Bello, Estrogen receptor alpha and beta in female rat pituitary cells, an immunochemical study. Gen. Comp. Endocrinol. 155, 857–868 (2008)CrossRefPubMedGoogle Scholar
  42. 42.
    A. Asnacios, O. Hamant, The mechanics behind cell polarity. Trends Cell Biol. 22, 584–591 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    E.A. McGee, A.J. Hsueh, Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214 (2000)PubMedGoogle Scholar
  44. 44.
    A. Agarwal, A. Aponte-Mellado, B.J. Premkumar, A. Shaman, S. Gupta, The effects of oxidative stress on female reproduction, a review. Reprod. Biol. Endocrinol. 10, 49 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    S.B. Doshi, A. Agarwal, The role of oxidative stress in menopause. J. Midlife Health. 4, 140–146 (2013)PubMedCentralPubMedGoogle Scholar
  46. 46.
    S.D. Wang, B.C. Chen, S.T. Kao, C.J. Liu, C.C. Yeh, Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med. 14, 26 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Y.H. Choi, W.H. Lee, K.Y. Park, L. Zhang, p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91(2), 164–173 (2000)CrossRefPubMedGoogle Scholar
  48. 48.
    M. Yamasaki, S. Fujita, E. Ishiyama, A. Mukai, H. Madhyastha, Y. Sakakibara, M. Suiko, K. Hatakeyama, T. Nemoto, K. Morishita, H. Kataoka, H. Tsubouchi, K. Nishiyama, Soy-derived isoflavones inhibit the growth of adult T-cell leukemia cells in vitro and in vivo. Cancer Sci. 98, 1740–1746 (2007)CrossRefPubMedGoogle Scholar
  49. 49.
    G. Rimbach, S. De Pascual-Teresa, B.A. Ewins, S. Matsugo, Y. Uchida, A.M. Minihane, R. Turner, K. VafeiAdou, P.D. Weinberg, Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33, 913–925 (2003)CrossRefPubMedGoogle Scholar
  50. 50.
    K.A. Rasbach, R.G. Schnellmann, Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 325, 536–543 (2008)CrossRefPubMedGoogle Scholar
  51. 51.
    A.E. Drummond, P.J. Fuller, Ovarian actions of estrogen receptor-β, an update. Semin. Reprod. Med. 30, 32–38 (2012)CrossRefPubMedGoogle Scholar
  52. 52.
    C. Spuch, Y. Diz-Chaves, D. Pérez-Tilve, F. Mallo, Fibroblast growth factor-2 and epidermal growth factor modulate prolactin responses to TRH and dopamine in primary cultures. Endocrine 29, 317–324 (2006)CrossRefPubMedGoogle Scholar
  53. 53.
    A.P. Heaney, M. Fernando, S. Melmed, Functional role of estrogen in pituitary tumor pathogenesis. J. Clin. Invest. 109, 277–283 (2002)PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    V. Milošević, V. Ajdžanović, Pituitary hormone-producing cells after estradiol application in rat models of menopause. Serb. J. Exp. Clin. Res. 15, 115–120 (2014)CrossRefGoogle Scholar
  55. 55.
    G.D. Niswender, J.L. Juengel, P.J. Silva, M.K. Rollyson, E.W. McIntush, Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29 (2000)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ivana M. Medigović
    • 1
  • Jasmina B. Živanović
    • 1
  • Vladimir Z. Ajdžanović
    • 1
  • Aleksandra L. Nikolić-Kokić
    • 2
  • Sanja D. Stanković
    • 3
  • Svetlana L. Trifunović
    • 1
  • Verica Lj. Milošević
    • 1
  • Nataša M. Nestorović
    • 1
  1. 1.Department of Citology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Department of Physiology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  3. 3.Center for Medical Biochemistry, Clinical Centre of Serbia, School of PharmacyUniversity of BelgradeBelgradeSerbia

Personalised recommendations