Advertisement

Endocrine

, Volume 52, Issue 1, pp 73–85 | Cite as

Low extracellular sodium promotes adipogenic commitment of human mesenchymal stromal cells: a novel mechanism for chronic hyponatremia-induced bone loss

  • B. Fibbi
  • S. Benvenuti
  • C. Giuliani
  • C. Deledda
  • P. Luciani
  • M. Monici
  • B. Mazzanti
  • C. Ballerini
  • A. PeriEmail author
Original Article

Abstract

Hyponatremia represents an independent risk factor for osteoporosis and fractures, affecting both bone density and quality. A direct stimulation of bone resorption in the presence of reduced extracellular sodium concentrations ([Na+]) has been shown, but the effects of low [Na+] on osteoblasts have not been elucidated. We investigated the effects of a chronic reduction of extracellular [Na+], independently of osmotic stress, on human mesenchymal stromal cells (hMSC) from bone marrow, the common progenitor for osteoblasts and adipocytes. hMSC adhesion and viability were significantly inhibited by reduced [Na+], but their surface antigen profile and immuno-modulatory properties were not altered. In low [Na+], hMSC were able to commit toward both the osteogenic and the adipogenic phenotypes, as demonstrated by differentiation markers analysis. However, the dose-dependent increase in the number of adipocytes as a function of reduced [Na+] suggested a preferential commitment toward the adipogenic phenotype at the expense of osteogenesis. The amplified inhibitory effect on the expression of osteoblastic markers exerted by adipocytes-derived conditioned media in low [Na+] further supported this observation. The analysis of cytoskeleton showed that low [Na+] were associated with disruption of tubulin organization in hMSC-derived osteoblasts, thus suggesting a negative effect on bone quality. Finally, hMSC-derived osteoblasts increased their expression of factors stimulating osteoclast recruitment and activity. These findings confirm that hyponatremia should be carefully taken into account because of its negative effects on bone, in addition to the known neurological effects, and indicate for the first time that impaired osteogenesis may be involved.

Keywords

Osteoporosis Chronic hyponatremia Mesenchymal stromal cells Bone marrow adipogenetic/osteogenetic balance 

Notes

Acknowledgments

The authors wish to thank Ente Cassa di Risparmio di Firenze for supporting the study.

Conflict of interest

Benedetta Fibbi, Susanna Benvenuti, Corinna Giuliani, Cristiana Deledda, Paola Luciani, Monica Monici, Benedetta Mazzanti, Clara Ballerini, and Alessandro Peri declare that they have no conflict of interest.

Supplementary material

12020_2015_663_MOESM1_ESM.doc (24 kb)
Supplementary material 1 (DOC 24 kb)

References

  1. 1.
    A. Upadhyay, B.L. Jaber, N.E. Madias, Incidence and prevalence of hyponatremia. Am. J. Med. 119, S30–S35 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    E.J. Hoorn, J. Lindemans, R. Zietse, Development of severe hyponatremia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol. Dial. Transplant. 21, 70–76 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    G. Corona, C. Giuliani, G. Parenti, D. Norello, J.G. Verbalis, G. Forti, M. Maggi, A. Peri, Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8, e80451 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    B. Renneboog, W. Musch, X. Vandemergel, M.U. Manto, G. Decaux, Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am. J. Med. 119, 71.e1–71.e8 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Kinsella, S. Moran, M.O. Sullivan, M.G. Molloy, J.A. Eustace, Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin. J. Am. Soc. Nephrol. 5, 275–280 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    E.J. Hoorn, F. Rivadeneira, J.B. van Meurs, G. Ziere, B.H. Stricker, A. Hofman, H.A. Pols, R. Zietse, A.G. Uitterlinden, M.C. Zillikens, Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J. Bone Miner. Res. 26, 1822–1828 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    R. Hasserius, M.K. Karlsson, B.E. Nilsson, I. Redlund-Johnell, O. Johnell, Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporosis Int. 14, 61–68 (2003)CrossRefGoogle Scholar
  8. 8.
    F. Gankam-Kengne, C. Andres, L. Sattar, C. Melot, G. Decaux, Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM 101, 583–588 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    H.S. Sandhu, E. Gilles, M.V. DeVita, G. Panagopoulos, M.F. Michelis, Hyponatremia associated with large-bone fracture in elderly patients. Int. Urol. Nephrol. 41, 733–737 (2009)CrossRefPubMedGoogle Scholar
  10. 10.
    R. Tolouian, T. Alhamad, M. Farazmand, Z.D. Mulla, The correlation of hip fracture and hyponatremia in the elderly. J. Nephrol. 25, 789–793 (2012)CrossRefPubMedGoogle Scholar
  11. 11.
    T. Hagino, S. Ochiai, Y. Watanabe, S. Senga, M. Saito, Y. Takayama, M. Wako, T. Ando, E. Sato, H. Haro, Hyponatremia at admission is associated with in-hospital death in patients with hip fracture. Arch. Orthop. Trauma Surg. 133, 507–511 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    J.G. Verbalis, J. Barsony, Y. Sugimura, Y. Tian, D.J. Adams, E.A. Carter, H.E. Resnick, Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 25, 554–563 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    A.S. Sejling, U. Pedersen-Bjergaard, P. Eiken, Syndrome of inappropriate ADH secretion and severe osteoporosis. J. Clin. Endocrinol. Metab. 97, 4306–4310 (2012)CrossRefPubMedGoogle Scholar
  14. 14.
    A.S. Sejling, A.L. Thorsteinsson, U. Pedersen-Bjergaard, P. Eiken, Recovery from SIADH-associated osteoporosis: a case report. J. Clin. Endocrinol. Metab. 99, 3527–3530 (2014)CrossRefPubMedGoogle Scholar
  15. 15.
    C. Kruse, P. Eiken, P. Vestergaard, Hyponatremia and osteoporosis: insights from the Danish National Patient Registry. Osteoporos. Int. 26, 1005–1016 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    F. Afshinnia, B. Sundaram, R.J. Ackermann, K.K. Wong, Hyponatremia and osteoporosis: reappraisal of a novel association. Osteoporos. Int. (2015). doi: 10.1007/s00198-015-3108-z PubMedGoogle Scholar
  17. 17.
    J. Barsony, Y. Sugimura, J.G. Verbalis, Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J. Biol. Chem. 286, 10864–10875 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    W.H. Bergstrom, The participation of bone in total body sodium metabolism in the rat. J. Clin. Invest. 34, 97–104 (1955)CrossRefGoogle Scholar
  19. 19.
    I.S. Edelman, A.H. James, H. Baden, F.D. Moore, Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone. J. Clin. Invest. 33, 122–131 (1954)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    J.G. Verbalis, S.R. Goldsmith, A. Greenberg, C. Korzelius, R.W. Schrier, R.H. Sterns, C.J. Thompson, Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126, S1–S42 (2013)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Benvenuti, C. Deledda, P. Luciani, G. Modi, A. Bossio, C. Giuliani, B. Fibbi, A. Peri, Low extracellular sodium causes neuronal distress independently of reduced osmolality in an experimental model of chronic hyponatremia. Neuromolecular Med. 15, 493–503 (2013)CrossRefPubMedGoogle Scholar
  22. 22.
    D. Baksh, L. Song, R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell Mol. Med. 8, 301–316 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    P. Sambrook, C. Cooper, Osteoporosis. Lancet 367, 2010–2018 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    R. Tamma, L. Sun, C. Cuscito, P. Lu, M. Corcelli, J. Li, G. Colaianni, S.S. Moonga, A. Di Benedetto, M. Grano, S. Colucci, T. Yuen, M.I. New, A. Zallone, M. Zaidi, Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl. Acad. Sci. USA 110, 18644–18649 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    T.J. Wronski, C.C. Walsh, L.A. Ignaszewski, Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7, 119–123 (1986)CrossRefPubMedGoogle Scholar
  26. 26.
    E.J. Moerman, K. Teng, D.A. Lipschitz, B. Lecka-Czernik, Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPARγ2 transcription factor and TGF-β/BMP signalling pathways. Aging Cell 3, 379–389 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    M. Zayzafon, W.E. Gathings, J.M. McDonald, Modeled microgravity inhibit osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145, 2421–2432 (2004)CrossRefGoogle Scholar
  28. 28.
    L. Forsen, H.E. Meyer, K. Misthjell, T.H. Edna, Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42, 920–925 (1999)CrossRefPubMedGoogle Scholar
  29. 29.
    S. Benvenuti, I. Cellai, P. Luciani, C. Deledda, S. Baglioni, C. Giuliani, R. Saccaridi, B. Mozzanti, S. Dal Pozzo, E. Mannucci, A. Peri, M. Serio, Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J. Endocrinol. Invest. 30, RC26–RC30 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)CrossRefPubMedGoogle Scholar
  31. 31.
    A.C. Maurin, P.M. Chavassieux, L. Frappart, P.D. Delmas, C.M. Serre, P.J. Meunier, Influence of mature adipocytes on osteoblast proliferation in human primary co-cultures. Bone 26, 485–489 (2000)CrossRefPubMedGoogle Scholar
  32. 32.
    A.C. Maurin, P.M. Chavassieux, E. Vericel, P.J. Meunier, Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 31, 260–266 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    J. Bassols, F.J. Ortega, J.M. Moreno-Navarrete, B. Peral, W. Ricart, J.M. Fernández-Real, Study of the proinflammatory role of human differentiated omental adipocytes. J. Cell. Biochem. 107, 1107–1117 (2009)CrossRefPubMedGoogle Scholar
  34. 34.
    S. Kwan Tat, M. Padrines, S. Théoleyre, D. Heymann, Y. Fortun, IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004)CrossRefPubMedGoogle Scholar
  35. 35.
    C.J. Rosen, C. Ackert-Bicknell, J.P. Rodriguez, A.M. Pino, Marrow fat and the bone microenvironment: developmental, functional and pathological implications. Crit. Rev. Eukariot. Gene Expr. 19, 109–124 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Krings, S. Rahman, S. Huang, Y. Lu, P.J. Czernik, B. Lecka-Czernik, Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50, 546–552 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    M. Zhao, S. Ko, J.H. Liu, D. Chen, J. Zhang, B. Wang, S.E. Harris, B.O. Oyajobi, G.R. Mundy, Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol. Cell. Biol. 29, 1291–1305 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    H.F. Al-Jallad, V.D. Myneni, S.A. Piercy-Kotb, N. Chabot, A. Mulani, J.W. Keillor, M.T. Kaartinen, Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS One 6, e15893 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    W. Yang, X. Guo, S. Thein, F. Xu, S. Sugii, P.W. Baas, G.K. Radda, W. Han, Regulation of adipogenesis by cytoskeleton remodeling is facilitated by acetyltransferase MEC-17-dependent acetylation of α-tubulin. Biochem. J. 449, 605–612 (2013)CrossRefPubMedGoogle Scholar
  40. 40.
    A.P. Molloy, F.T. Martin, R.M. Dwyer, T.P. Griffin, M. Murphy, F.P. Barry, T. O’Brien, M.J. Kerin, Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer 124, 326–332 (2009)CrossRefPubMedGoogle Scholar
  41. 41.
    A. Kortesidis, A. Zannettino, S. Isenmann, S. Shi, T. Lapidot, S. Gronthos, Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793–3801 (2005)CrossRefPubMedGoogle Scholar
  42. 42.
    H. Goto, A. Hozumi, M. Osaki, T. Fukushima, K. Sakamoto, A. Yonekura, M. Tomita, K. Furukawa, H. Shindo, H. Baba, Primary human bone marrow adipocytes support TNF-α-induced osteoclast differentiation and function through RANKL expression. Cytokine 56, 662–668 (2011)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Fibbi
    • 1
  • S. Benvenuti
    • 1
  • C. Giuliani
    • 1
  • C. Deledda
    • 1
  • P. Luciani
    • 1
  • M. Monici
    • 2
  • B. Mazzanti
    • 3
  • C. Ballerini
    • 4
  • A. Peri
    • 1
    Email author
  1. 1.Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
  2. 2.ASAcampus Joint Laboratory, ASA Research Division, “Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies” (DENOThe), Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
  3. 3.Haematology Unit, Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
  4. 4.Department of NEUROFARBAUniversity of FlorenceFlorenceItaly

Personalised recommendations