Advertisement

Endocrine

, Volume 50, Issue 2, pp 276–291 | Cite as

Hypothalamic-autonomic control of energy homeostasis

  • Patricia Seoane-CollazoEmail author
  • Johan Fernø
  • Francisco Gonzalez
  • Carlos Diéguez
  • Rosaura Leis
  • Rubén Nogueiras
  • Miguel LópezEmail author
Review

Abstract

Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase–SNS–BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.

Keywords

Hypothalamus Autonomic nervous system Energy balance 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement No 281854—the ObERStress European Research Council Project (ML), the Xunta de Galicia (ML: 2012-CP070; RN: EM 2012/039 and 2012-CP069), Instituto de Salud Carlos III (ISCIII) (ML: PI12/01814), and MINECO co-funded by the European Union FEDER Program (RN: BFU2012-35255; CD: BFU2011-29102). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIII. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The manuscript was edited for English language by Dr. Pamela V Lear.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)PubMedGoogle Scholar
  2. 2.
    G.J. Morton, D.E. Cummings, D.G. Baskin, G.S. Barsh, M.W. Schwartz, Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Lopez, C.J. Lelliott, A. Vidal-Puig, Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. BioEssays 29, 248–261 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    K. Rahmouni, Obesity, sympathetic overdrive, and hypertension: the leptin connection. Hypertension 55, 844–845 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    K. Rahmouni, Obesity-associated hypertension: recent progress in deciphering the pathogenesis. Hypertension 64, 215–221 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    M.P.B. de Martinez, M. Lopez, “Mens sana in corpore sano”: exercise and hypothalamic ER stress. PLoS Biol. 8(8), e1000464 (2010)CrossRefGoogle Scholar
  7. 7.
    D.B. Savage, K.F. Petersen, G.I. Shulman, Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87, 507–520 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    J. Park, T.S. Morley, M. Kim, D.J. Clegg, P.E. Scherer, Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    R. Roubenoff, R.A. Roubenoff, J.G. Cannon, J.J. Kehayias, H. Zhuang, B. Dawson-Hughes, C.A. Dinarello, I.H. Rosenberg, Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest. 93, 2379–2386 (1994)PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    J.E. Morley, D.R. Thomas, M.M. Wilson, Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006)PubMedGoogle Scholar
  11. 11.
    S. Kir, J.P. White, S. Kleiner, L. Kazak, P. Cohen, V.E. Baracos, B.M. Spiegelman, Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    M. Petruzzelli, M. Schweiger, R. Schreiber, R. Campos-Olivas, M. Tsoli, J. Allen, M. Swarbrick, S. Rose-John, M. Rincon, G. Robertson, R. Zechner, E.F. Wagner, A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014)PubMedCrossRefGoogle Scholar
  13. 13.
    T.J. Bartness, Y.B. Shrestha, C.H. Vaughan, G.J. Schwartz, C.K. Song, Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    E. Fliers, L.P. Klieverik, A. Kalsbeek, Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    S.M. Harlan, K. Rahmouni, PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2, 69–73 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    R.M. Buijs, The autonomic nervous system: a balancing act. Handb Clin Neurol. 117, 1–11 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRefGoogle Scholar
  18. 18.
    K. Nonogaki, New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000)PubMedCrossRefGoogle Scholar
  19. 19.
    A. Giordano, C.K. Song, R.R. Bowers, J.C. Ehlen, A. Frontini, S. Cinti, T.J. Bartness, White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006)PubMedCrossRefGoogle Scholar
  20. 20.
    F. Kreier, R.M. Buijs, Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R548–R549 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    L.P. Klieverik, S.F. Janssen, A. van Rial, E. Foppen, P.H. Bisschop, M.J. Serlie, A. Boelen, M.T. Ackermans, H.P. Sauerwein, E. Fliers, A. Kalsbeek, Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc. Natl. Acad. Sci. U.S.A. 106, 5966–5971 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    C.X. Yi, S.E. la Fleur, E. Fliers, A. Kalsbeek, The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    R. Rodriguez-Diaz, A. Caicedo, Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 28, 745–756 (2014)PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994)PubMedCrossRefGoogle Scholar
  25. 25.
    R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)PubMedCrossRefGoogle Scholar
  26. 26.
    B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    A.J. Whittle, M. Lopez, A. Vidal-Puig, Using brown adipose tissue to treat obesity—the central issue. Trends Mol Med. 17, 405–411 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    C. Contreras, F. Gonzalez, J. Ferno, C. Dieguez, K. Rahmouni, R. Nogueiras, M. Lopez, The brain and brown fat. Ann. Med. 0, 1–19 (2014)Google Scholar
  29. 29.
    S.F. Morrison, C.J. Madden, D. Tupone, Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    J. Nedergaard, T. Bengtsson, B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 293, E444–E452 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, C.R. Kahn, Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    K.A. Virtanen, M.E. Lidell, J. Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N.J. Savisto, S. Enerback, P. Nuutila, Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)PubMedCrossRefGoogle Scholar
  33. 33.
    W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders, J.M. Drossaerts, G.J. Kemerink, N.D. Bouvy, P. Schrauwen, G.J. Teule, Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    F. Villarroya, A. Vidal-Puig, Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17, 638–643 (2013)PubMedCrossRefGoogle Scholar
  35. 35.
    A. Frontini, S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    A. Giordano, A. Frontini, M. Castellucci, S. Cinti, Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J. Histochem. Cytochem. 52, 923–930 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    F.M. Fisher, S. Kleiner, N. Douris, E.C. Fox, R.J. Mepani, F. Verdeguer, J. Wu, A. Kharitonenkov, J.S. Flier, E. Maratos-Flier, B.M. Spiegelman, FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    J. Nedergaard, B. Cannon, The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014)PubMedCrossRefGoogle Scholar
  39. 39.
    T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRefGoogle Scholar
  40. 40.
    L.W. Enquist, Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J. Infect. Dis. 186(Suppl 2), S209–S214 (2002)PubMedCrossRefGoogle Scholar
  41. 41.
    M. Bamshad, C.K. Song, T.J. Bartness, CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999)PubMedGoogle Scholar
  42. 42.
    B.J. Oldfield, M.E. Giles, A. Watson, C. Anderson, L.M. Colvill, M.J. McKinley, The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110, 515–526 (2002)PubMedCrossRefGoogle Scholar
  43. 43.
    M.N. Perkins, N.J. Rothwell, M.J. Stock, T.W. Stone, Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289, 401–402 (1981)PubMedCrossRefGoogle Scholar
  44. 44.
    T. Yoshida, G.A. Bray, Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am. J. Physiol. 246, R558–R565 (1984)PubMedGoogle Scholar
  45. 45.
    S.J. Holt, H.V. Wheal, D.A. York, Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res. 405, 227–233 (1987)PubMedCrossRefGoogle Scholar
  46. 46.
    D. Lindberg, P. Chen, C. Li, Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 521, 3167–3190 (2013)PubMedCrossRefGoogle Scholar
  47. 47.
    K.W. Kim, L. Zhao, J. Donato Jr, D. Kohno, Y. Xu, C.F. Elias, C. Lee, K.L. Parker, J.K. Elmquist, Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc. Natl. Acad. Sci. USA 108, 10673–10678 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    S.F. Morrison, RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276, R962–R973 (1999)PubMedGoogle Scholar
  49. 49.
    T. Uno, M. Shibata, Role of inferior olive and thoracic IML neurons in nonshivering thermogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R536–R546 (2001)PubMedGoogle Scholar
  50. 50.
    T. Sakaguchi, K. Arase, G.A. Bray, Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism. 37, 732–735 (1988)PubMedCrossRefGoogle Scholar
  51. 51.
    T. Sakaguchi, G.A. Bray, Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res. 492, 271–280 (1989)PubMedCrossRefGoogle Scholar
  52. 52.
    S. Amir, Intra-ventromedial hypothalamic injection of glutamate stimulates brown adipose tissue thermogenesis in the rat. Brain Res. 511, 341–344 (1990)PubMedCrossRefGoogle Scholar
  53. 53.
    M. Lopez, L. Varela, M.J. Vazquez, S. Rodriguez-Cuenca, C.R. Gonzalez, V.R. Velagapudi, D.A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, M.P.B. Martinez de, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A.K. Saha, K. Rahmouni, C. Dieguez, A. Vidal-Puig, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    A.J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares, M.J. Vazquez, D. Morgan, R.I. Csikasz, R. Gallego, S. Rodriguez-Cuenca, M. Dale, S. Virtue, F. Villarroya, B. Cannon, K. Rahmouni, M. Lopez, A. Vidal-Puig, BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    M. Tanida, N. Yamamoto, T. Shibamoto, K. Rahmouni, Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8, e56660 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    P. Seoane-Collazo, M.P.B. Martinez de, J. Ferno, C. Dieguez, R. Nogueiras, M. Lopez, Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014)PubMedCrossRefGoogle Scholar
  57. 57.
    M.P.B. Martinez de, I. Gonzalez-Garcia, L. Martins, R. Lage, D. Fernandez-Mallo, N. Martinez-Sanchez, F. Ruiz-Pino, J. Liu, D.A. Morgan, L. Pinilla, R. Gallego, A.K. Saha, A. Kalsbeek, E. Fliers, P.H. Bisschop, C. Dieguez, R. Nogueiras, K. Rahmouni, M. Tena-Sempere, M. Lopez, Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014)CrossRefGoogle Scholar
  58. 58.
    D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz, F. Villaroya, M. Serrano, J. Ferno, J. Salvador, J. Escalada, C. Dieguez, M. Lopez, G. Fruhbeck, R. Nogueiras, GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014)PubMedCrossRefGoogle Scholar
  59. 59.
    B.M. Owen, X. Ding, D.A. Morgan, K.C. Coate, A.L. Bookout, K. Rahmouni, S.A. Kliewer, D.J. Mangelsdorf, FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    C. Fernandes-Santos, Z. Zhang, D.A. Morgan, D.F. Guo, A.F. Russo, K. Rahmouni, Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154, 2481–2488 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    M. Lopez, R. Nogueiras, Firing up brown fat with brain amylin. Endocrinology 154, 2263–2265 (2013)PubMedCrossRefGoogle Scholar
  62. 62.
    C. Contreras, I. Gonzalez-Garcia, N. Martinez-Sanchez, P. Seoane-Collazo, J. Jacas, D.A. Morgan, D. Serra, R. Gallego, F. Gonzalez, N. Casals, R. Nogueiras, K. Rahmouni, C. Dieguez, M. Lopez, Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014)PubMedCrossRefGoogle Scholar
  63. 63.
    L.L. Bernardis, L.L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306 (1998)PubMedCrossRefGoogle Scholar
  64. 64.
    J.A. Dimicco, D.V. Zaretsky, The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007)PubMedCrossRefGoogle Scholar
  65. 65.
    W.H. Cao, S.F. Morrison, Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51, 426–437 (2006)PubMedCrossRefGoogle Scholar
  66. 66.
    P.J. Enriori, P. Sinnayah, S.E. Simonds, R.C. Garcia, M.A. Cowley, Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Y. Zhang, I.A. Kerman, A. Laque, P. Nguyen, M. Faouzi, G.W. Louis, J.C. Jones, C. Rhodes, H. Munzberg, Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    P.T. Chao, L. Yang, S. Aja, T.H. Moran, S. Bi, Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    K. Rezai-Zadeh, S. Yu, Y. Jiang, A. Laque, C. Schwartzenburg, C.D. Morrison, A.V. Derbenev, A. Zsombok, H. Munzberg, Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 3, 681–693 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    S.J. Lee, S. Verma, S.E. Simonds, M.A. Kirigiti, P. Kievit, S.R. Lindsley, A. Loche, M.S. Smith, M.A. Cowley, K.L. Grove, Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J. Neurosci. 33, 15306–15317 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    S.M. Harlan, D.A. Morgan, K. Agassandian, D.F. Guo, M.D. Cassell, C.D. Sigmund, A.L. Mark, K. Rahmouni, Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    G.A. Bewick, J.V. Gardiner, W.S. Dhillo, A.S. Kent, N.E. White, Z. Webster, M.A. Ghatei, S.R. Bloom, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005)PubMedGoogle Scholar
  73. 73.
    Y.C. Shi, J. Lau, Z. Lin, H. Zhang, L. Zhai, G. Sperk, R. Heilbronn, M. Mietzsch, S. Weger, X.F. Huang, R.F. Enriquez, P.A. Baldock, L. Zhang, A. Sainsbury, H. Herzog, S. Lin, Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236–248 (2013)PubMedCrossRefGoogle Scholar
  74. 74.
    R.D. Cone, Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005)PubMedCrossRefGoogle Scholar
  75. 75.
    R.D. Cone, Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006)PubMedCrossRefGoogle Scholar
  76. 76.
    H. Krude, H. Biebermann, W. Luck, R. Horn, G. Brabant, A. Gruters, Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998)PubMedCrossRefGoogle Scholar
  77. 77.
    C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, P. Froguel, Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 106, 253–262 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    A.A. Butler, R.D. Cone, The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 (2002)PubMedCrossRefGoogle Scholar
  79. 79.
    I.S. Farooqi, S. Drop, A. Clements, J.M. Keogh, J. Biernacka, S. Lowenbein, B.G. Challis, S. O’Rahilly, Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 55, 2549–2553 (2006)PubMedCrossRefGoogle Scholar
  80. 80.
    E.D. Berglund, T. Liu, X. Kong, J.W. Sohn, L. Vong, Z. Deng, C.E. Lee, S. Lee, K.W. Williams, D.P. Olson, P.E. Scherer, B.B. Lowell, J.K. Elmquist, Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Y. Zhang, G.E. Kilroy, T.M. Henagan, V. Prpic-Uhing, W.G. Richards, A.W. Bannon, R.L. Mynatt, T.W. Gettys, Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J. 19, 1482–1491 (2005)PubMedCrossRefGoogle Scholar
  82. 82.
    M. Schneeberger, M.O. Dietrich, D. Sebastian, M. Imbernon, C. Castano, A. Garcia, Y. Esteban, A. Gonzalez-Franquesa, I.C. Rodriguez, A. Bortolozzi, P.M. Garcia-Roves, R. Gomis, R. Nogueiras, T.L. Horvath, A. Zorzano, M. Claret, Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013)PubMedCrossRefGoogle Scholar
  83. 83.
    G. Ramadori, T. Fujikawa, M. Fukuda, J. Anderson, D.A. Morgan, R. Mostoslavsky, R.C. Stuart, M. Perello, C.R. Vianna, E.A. Nillni, K. Rahmouni, R. Coppari, SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    H.B. Ruan, M.O. Dietrich, Z.W. Liu, M.R. Zimmer, M.D. Li, J.P. Singh, K. Zhang, R. Yin, J. Wu, T.L. Horvath, X. Yang, O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    J.K. Elmquist, R. Coppari, N. Balthasar, M. Ichinose, B.B. Lowell, Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 493, 63–71 (2005)PubMedCrossRefGoogle Scholar
  86. 86.
    G.S. Yeo, L.K. Heisler, Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012)PubMedCrossRefGoogle Scholar
  87. 87.
    C.J. Madden, S.F. Morrison, Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    D. Kong, Q. Tong, C. Ye, S. Koda, P.M. Fuller, M.J. Krashes, L. Vong, R.S. Ray, D.P. Olson, B.B. Lowell, GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    M. Lopez, C.V. Alvarez, R. Nogueiras, C. Dieguez, Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 19, 418–427 (2013)PubMedCrossRefGoogle Scholar
  90. 90.
    E. Satinoff, D. Valentino, P. Teitelbaum, Thermoregulatory cold-defense deficits in rats with preoptic/anterior hypothalamic lesions. Brain Res. Bull. 1, 553–565 (1976)PubMedCrossRefGoogle Scholar
  91. 91.
    J.D. Guieu, J.D. Hardy, Effects of heating and cooling of the spinal cord on preoptic unit activity. J. Appl. Physiol. 29, 675–683 (1970)PubMedGoogle Scholar
  92. 92.
    J.A. Boulant, J.D. Hardy, The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 240, 639–660 (1974)PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    H.T. Hammel, J.D. Hardy, M.M. Fusco, Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am. J. Physiol. 198, 481–486 (1960)PubMedGoogle Scholar
  94. 94.
    K. Imai-Matsumura, K. Matsumura, T. Nakayama, Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34, 939–943 (1984)PubMedCrossRefGoogle Scholar
  95. 95.
    S. Amir, A. Schiavetto, Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat. Brain Res. 528, 138–142 (1990)PubMedCrossRefGoogle Scholar
  96. 96.
    C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    V. Ryu, J.T. Garretson, Y. Liu, C.H. Vaughan, T.J. Bartness, Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015)PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006)PubMedCrossRefGoogle Scholar
  99. 99.
    A.S. Greenberg, M.S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461S–465S (2006)PubMedGoogle Scholar
  100. 100.
    A.P. Coll, I.S. Farooqi, S. O’Rahilly, The hormonal control of food intake. Cell 129, 251–262 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    F.F. Casanueva, C. Dieguez, Neuroendocrine regulation and actions of leptin. Front. Neuroendocrinol. 20, 317–363 (1999)PubMedCrossRefGoogle Scholar
  102. 102.
    T.J. Bartness, S.C. Kay, H. Shi, R.R. Bowers, M.T. Foster, Brain-adipose tissue cross talk. Proc Nutr Soc. 64, 53–64 (2005)PubMedCrossRefGoogle Scholar
  103. 103.
    R. Nogueiras, M. Lopez, C. Dieguez, Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes. Rev. 11, 185–201 (2010)PubMedCrossRefGoogle Scholar
  104. 104.
    M. Bamshad, V.T. Aoki, M.G. Adkison, W.S. Warren, T.J. Bartness, Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998)PubMedGoogle Scholar
  105. 105.
    H. Shi, T.J. Bartness, Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res. Bull. 54, 375–385 (2001)PubMedCrossRefGoogle Scholar
  106. 106.
    M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)PubMedCrossRefGoogle Scholar
  107. 107.
    G. Fruhbeck, L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez, A. Rodriguez, Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63–93 (2014)PubMedCrossRefGoogle Scholar
  108. 108.
    J. Shen, M. Tanida, J.F. Yao, A. Niijima, K. Nagai, Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci. Lett. 444, 166–171 (2008)PubMedCrossRefGoogle Scholar
  109. 109.
    M. Imbernon, D. Beiroa, M.J. Vazquez, D.A. Morgan, C. Veyrat-Durebex, B. Porteiro, A. Diaz-Arteaga, A. Senra, S. Busquets, D.A. Velasquez, O. Al-Massadi, L. Varela, M. Gandara, F.J. Lopez-Soriano, R. Gallego, L.M. Seoane, J.M. Argiles, M. Lopez, R.J. Davis, G. Sabio, F. Rohner-Jeanrenaud, K. Rahmouni, C. Dieguez, R. Nogueiras, Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    J.J. Hwa, L. Ghibaudi, J. Gao, E.M. Parker, Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R444–R451 (2001)PubMedGoogle Scholar
  111. 111.
    P.D. Raposinho, R.B. White, M.L. Aubert, The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J. Neuroendocrinol. 15, 173–181 (2003)PubMedCrossRefGoogle Scholar
  112. 112.
    C.K. Song, R.M. Jackson, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–R1476 (2005)PubMedCrossRefGoogle Scholar
  113. 113.
    C.K. Song, C.H. Vaughan, E. Keen-Rhinehart, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    M.N. Brito, N.A. Brito, D.J. Baro, C.K. Song, T.J. Bartness, Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148, 5339–5347 (2007)PubMedCrossRefGoogle Scholar
  115. 115.
    R. Nogueiras, P. Wiedmer, D. Perez-Tilve, C. Veyrat-Durebex, J.M. Keogh, G.M. Sutton, P.T. Pfluger, T.R. Castaneda, S. Neschen, S.M. Hofmann, P.N. Howles, D.A. Morgan, S.C. Benoit, I. Szanto, B. Schrott, A. Schurmann, H.G. Joost, C. Hammond, D.Y. Hui, S.C. Woods, K. Rahmouni, A.A. Butler, I.S. Farooqi, S. O’Rahilly, F. Rohner-Jeanrenaud, M.H. Tschop, The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 117, 3475–3488 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    S. Kaushik, E. Arias, H. Kwon, N.M. Lopez, D. Athonvarangkul, S. Sahu, G.J. Schwartz, J.E. Pessin, R. Singh, Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    M. Ruffin, S. Nicolaidis, Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 846, 23–29 (1999)PubMedCrossRefGoogle Scholar
  118. 118.
    A. Takahashi, T. Shimazu, Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4, 195–205 (1981)PubMedCrossRefGoogle Scholar
  119. 119.
    P. Cardinal, C. Andre, C. Quarta, L. Bellocchio, S. Clark, M. Elie, T. Leste-Lasserre, M. Maitre, D. Gonzales, A. Cannich, U. Pagotto, G. Marsicano, D. Cota, CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol Metab. 3, 705–716 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    V. Ryu, T.J. Bartness, Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    C.K. Song, G.J. Schwartz, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    B. Ahren, Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43, 393–410 (2000)PubMedCrossRefGoogle Scholar
  123. 123.
    B. Thorens, Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13(Suppl 1), 82–88 (2011)PubMedCrossRefGoogle Scholar
  124. 124.
    T. Li, J.Y. Chiang, Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 45, 145–155 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    R.J. Perry, V.T. Samuel, K.F. Petersen, G.I. Shulman, The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    C.J. Ramnanan, D.S. Edgerton, G. Kraft, A.D. Cherrington, Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 13(Suppl 1), 118–125 (2011)PubMedCrossRefGoogle Scholar
  127. 127.
    S.E. la Fleur, A. Kalsbeek, J. Wortel, R.M. Buijs, Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871, 50–56 (2000)PubMedCrossRefGoogle Scholar
  128. 128.
    V. Ulken, G.P. Puschel, K. Jungermann, Increase in glucose and lactate output and perfusion resistance by stimulation of hepatic nerves in isolated perfused rat liver: role of alpha 1-, alpha 2-, beta 1- and beta 2-receptors. Biol Chem Hoppe Seyler. 372, 401–409 (1991)PubMedCrossRefGoogle Scholar
  129. 129.
    R. Burcelin, M. Uldry, M. Foretz, C. Perrin, A. Dacosta, M. Nenniger-Tosato, J. Seydoux, S. Cotecchia, B. Thorens, Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J. Biol. Chem. 279, 1108–1115 (2004)PubMedCrossRefGoogle Scholar
  130. 130.
    T.O. Mundinger, G.J. Taborsky Jr, Differential action of hepatic sympathetic neuropeptides: metabolic action of galanin, vascular action of NPY. Am J Physiol Endocrinol Metab. 278, E390–E397 (2000)PubMedGoogle Scholar
  131. 131.
    S.T. Ruohonen, U. Pesonen, N. Moritz, K. Kaipio, M. Roytta, M. Koulu, E. Savontaus, Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance. Diabetes 57, 1517–1525 (2008)PubMedCrossRefGoogle Scholar
  132. 132.
    N. Uyama, A. Geerts, H. Reynaert, Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 280, 808–820 (2004)PubMedCrossRefGoogle Scholar
  133. 133.
    T. Shimazu, Nervous control of peripheral metabolism. Acta Physiol Pol. 30, 1–18 (1979)PubMedGoogle Scholar
  134. 134.
    T. Shimazu, S. Ogasawara, Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am. J. Physiol. 228, 1787–1793 (1975)PubMedGoogle Scholar
  135. 135.
    C.X. Yi, M.J. Serlie, M.T. Ackermans, E. Foppen, R.M. Buijs, H.P. Sauerwein, E. Fliers, A. Kalsbeek, A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    H. Tsuneki, E. Tokai, Y. Nakamura, K. Takahashi, M. Fujita, T. Asaoka, K. Kon, Y. Anzawa, T. Wada, I. Takasaki, K. Kimura, H. Inoue, M. Yanagisawa, T. Sakurai, T. Sasaoka, Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015)PubMedCrossRefGoogle Scholar
  137. 137.
    A. Takahashi, H. Ishimaru, Y. Ikarashi, E. Kishi, Y. Maruyama, Effects of ventromedial hypothalamus stimulation on glycogenolysis in rat liver using in vivo microdialysis. Metabolism. 46, 897–901 (1997)PubMedCrossRefGoogle Scholar
  138. 138.
    R.J. McCrimmon, X. Fan, Y. Ding, W. Zhu, R.J. Jacob, R.S. Sherwin, Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004)PubMedCrossRefGoogle Scholar
  139. 139.
    R.J. McCrimmon, X. Fan, H. Cheng, E. McNay, O. Chan, M. Shaw, Y. Ding, W. Zhu, R.S. Sherwin, Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006)PubMedCrossRefGoogle Scholar
  140. 140.
    R.J. McCrimmon, M. Shaw, X. Fan, H. Cheng, Y. Ding, M.C. Vella, L. Zhou, E.C. McNay, R.S. Sherwin, Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008)PubMedCrossRefGoogle Scholar
  141. 141.
    Q. Tong, C. Ye, R.J. McCrimmon, H. Dhillon, B. Choi, M.D. Kramer, J. Yu, Z. Yang, L.M. Christiansen, C.E. Lee, C.S. Choi, J.M. Zigman, G.I. Shulman, R.S. Sherwin, J.K. Elmquist, B.B. Lowell, Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    R. Zhang, H. Dhillon, H. Yin, A. Yoshimura, B.B. Lowell, E. Maratos-Flier, J.S. Flier, Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology 149, 5654–5661 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    O. Chan, W. Zhu, Y. Ding, R.J. McCrimmon, R.S. Sherwin, Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55, 1080–1087 (2006)PubMedCrossRefGoogle Scholar
  144. 144.
    O. Chan, S. Paranjape, D. Czyzyk, A. Horblitt, W. Zhu, Y. Ding, X. Fan, M. Seashore, R. Sherwin, Increased GABAergic output in the ventromedial hypothalamus contributes to impaired hypoglycemic counterregulation in diabetic rats. Diabetes 60, 1582–1589 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005)PubMedCrossRefGoogle Scholar
  146. 146.
    L. Huo, K. Gamber, S. Greeley, J. Silva, N. Huntoon, X.H. Leng, C. Bjorbaek, Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    G.H. Goncalves, W. Li, A.V. Garcia, M.S. Figueiredo, C. Bjorbaek, Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep. 7, 1093–1103 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    A.M. van den Hoek, C. van Heijningen, J.P. Schröder-van der Elst, D.M. Ouwens, L.M. Havekes, J.A. Romijn, A. Kalsbeek, H. Pijl, Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 57, 2304–2310 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    C.X. Yi, E. Foppen, W. Abplanalp, Y. Gao, A. Alkemade, S.E. la Fleur, M.J. Serlie, E. Fliers, R.M. Buijs, M.H. Tschop, A. Kalsbeek, Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61, 339–345 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    A. Kalsbeek, E. Foppen, I. Schalij, C. van Heijningen, J. van der Vliet, E. Fliers, R.M. Buijs, Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3, e3194 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    A. Pick, J. Clark, C. Kubstrup, M. Levisetti, W. Pugh, S. Bonner-Weir, K.S. Polonsky, Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47, 358–364 (1998)PubMedCrossRefGoogle Scholar
  152. 152.
    C. Bernard, M.F. Berthault, C. Saulnier, A. Ktorza, Neogenesis vs. apoptosis As main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195–1205 (1999)PubMedGoogle Scholar
  153. 153.
    M. Paris, C. Bernard-Kargar, M.F. Berthault, L. Bouwens, A. Ktorza, Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717–2727 (2003)PubMedCrossRefGoogle Scholar
  154. 154.
    B. Thorens, Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16(Suppl 1), 87–95 (2014)PubMedCrossRefGoogle Scholar
  155. 155.
    A.S. Jansen, J.L. Hoffman, A.D. Loewy, CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 766, 29–38 (1997)PubMedCrossRefGoogle Scholar
  156. 156.
    L. Rinaman, R.R. Miselis, The organization of vagal innervation of rat pancreas using cholera toxin-horseradish peroxidase conjugate. J. Auton. Nerv. Syst. 21, 109–125 (1987)PubMedCrossRefGoogle Scholar
  157. 157.
    R.M. Buijs, S.J. Chun, A. Niijima, H.J. Romijn, K. Nagai, Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 431, 405–423 (2001)PubMedCrossRefGoogle Scholar
  158. 158.
    R. Rodriguez-Diaz, S. Speier, R.D. Molano, A. Formoso, I. Gans, M.H. Abdulreda, O. Cabrera, J. Molina, A. Fachado, C. Ricordi, I. Leibiger, A. Pileggi, P.O. Berggren, A. Caicedo, Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci USA 109, 21456–21461 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    W.P. Borg, R.S. Sherwin, M.J. During, M.A. Borg, G.I. Shulman, Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995)PubMedCrossRefGoogle Scholar
  160. 160.
    M.A. Borg, R.S. Sherwin, W.P. Borg, W.V. Tamborlane, G.I. Shulman, Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest. 99, 361–365 (1997)PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    H.R. Berthoud, B. Jeanrenaud, Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979)PubMedCrossRefGoogle Scholar
  162. 162.
    S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, E.C. McNay, J.A. Cresswell, J.S. Bogan, R.J. McCrimmon, R.S. Sherwin, Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 59, 1521–1527 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, C.A. Grillo, S. Wilson, L. Reagan, R.S. Sherwin, Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab. 301, E978–E983 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    J.D. Kim, C. Toda, G. D’Agostino, C.J. Zeiss, R.J. DiLeone, J.D. Elsworth, R.G. Kibbey, O. Chan, B.K. Harvey, C.T. Richie, M. Savolainen, T. Myohanen, J.K. Jeong, S. Diano, Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci USA 111, 11876–11881 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    A. Joly-Amado, R.G. Denis, J. Castel, A. Lacombe, C. Cansell, C. Rouch, N. Kassis, J. Dairou, P.D. Cani, R. Ventura-Clapier, A. Prola, M. Flamment, F. Foufelle, C. Magnan, S. Luquet, Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    H.R. Berthoud, E.A. Fox, T.L. Powley, Localization of vagal preganglionics that stimulate insulin and glucagon secretion. Am. J. Physiol. 258, R160–R168 (1990)PubMedGoogle Scholar
  167. 167.
    E. Ionescu, F. Rohner-Jeanrenaud, H.R. Berthoud, B. Jeanrenaud, Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983)PubMedCrossRefGoogle Scholar
  168. 168.
    B.M. Mussa, D.M. Sartor, C. Rantzau, A.J. Verberne, Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion. Brain Res. 1394, 62–70 (2011)PubMedCrossRefGoogle Scholar
  169. 169.
    B.M. Mussa, A.J. Verberne, The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp. Physiol. 98, 25–37 (2013)PubMedCrossRefGoogle Scholar
  170. 170.
    S. Wan, F.H. Coleman, R.A. Travagli, Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007)PubMedCrossRefGoogle Scholar
  171. 171.
    S. Wan, K.N. Browning, R.A. Travagli, Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28, 2184–2191 (2007)PubMedCrossRefGoogle Scholar
  172. 172.
    B.B. Kahn, J.S. Flier, Obesity and insulin resistance. J Clin Invest. 106, 473–481 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    J.S. Marino, Y. Xu, J.W. Hill, Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22, 275–285 (2011)PubMedGoogle Scholar
  174. 174.
    I.A. Kerman, L.W. Enquist, S.J. Watson, B.J. Yates, Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003)PubMedGoogle Scholar
  175. 175.
    I.A. Kerman, H. Akil, S.J. Watson, Rostral elements of sympatho-motor circuitry: a virally mediated transsynaptic tracing study. J. Neurosci. 26, 3423–3433 (2006)PubMedCrossRefGoogle Scholar
  176. 176.
    T. Babic, M.N. Purpera, B.W. Banfield, H.R. Berthoud, C.D. Morrison, Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Res. 1345, 146–155 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    M.S. Haque, Y. Minokoshi, M. Hamai, M. Iwai, M. Horiuchi, T. Shimazu, Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999)PubMedCrossRefGoogle Scholar
  178. 178.
    T. Shimazu, M. Sudo, Y. Minokoshi, A. Takahashi, Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27, 501–504 (1991)PubMedCrossRefGoogle Scholar
  179. 179.
    M. Sudo, Y. Minokoshi, T. Shimazu, Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am. J. Physiol. 261, E298–E303 (1991)PubMedGoogle Scholar
  180. 180.
    Y. Minokoshi, Y. Okano, T. Shimazu, Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 649, 343–347 (1994)PubMedCrossRefGoogle Scholar
  181. 181.
    Y. Minokoshi, M.S. Haque, T. Shimazu, Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999)PubMedCrossRefGoogle Scholar
  182. 182.
    T. Shiuchi, M.S. Haque, S. Okamoto, T. Inoue, H. Kageyama, S. Lee, C. Toda, A. Suzuki, E.S. Bachman, Y.B. Kim, T. Sakurai, M. Yanagisawa, S. Shioda, K. Imoto, Y. Minokoshi, Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009)PubMedCrossRefGoogle Scholar
  183. 183.
    R.S. Ahima, J.S. Flier, Leptin. Annu. Rev. Physiol. 62, 413–437 (2000)PubMedCrossRefGoogle Scholar
  184. 184.
    M.A. Cowley, J.L. Smart, M. Rubinstein, M.G. Cerdan, S. Diano, T.L. Horvath, R.D. Cone, M.J. Low, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)PubMedCrossRefGoogle Scholar
  185. 185.
    G. Fruhbeck, M. Aguado, J. Gomez-Ambrosi, J.A. Martinez, Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun. 250, 99–102 (1998)PubMedCrossRefGoogle Scholar
  186. 186.
    S. Kamohara, R. Burcelin, J.L. Halaas, J.M. Friedman, M.J. Charron, Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997)PubMedCrossRefGoogle Scholar
  187. 187.
    C. Buettner, E.D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, J. Harvey-White, G.J. Schwartz, G. Kunos, L. Rossetti, C. Buettner, Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  188. 188.
    W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz, Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 100, 270–278 (1997)PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    S. Park, I.S. Ahn, D.S. Kim, Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci. 86, 854–862 (2010)PubMedCrossRefGoogle Scholar
  190. 190.
    J. German, F. Kim, G.J. Schwartz, P.J. Havel, C.J. Rhodes, M.W. Schwartz, G.J. Morton, Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150, 4502–4511 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    A. Warner, J. Mittag, Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29–R35 (2012)PubMedCrossRefGoogle Scholar
  192. 192.
    N. Martinez-Sanchez, C.V. Alvarez, J. Ferno, R. Nogueiras, C. Dieguez, M. Lopez, Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab. 28, 703–712 (2014)PubMedCrossRefGoogle Scholar
  193. 193.
    M. Sjogren, A. Alkemade, J. Mittag, K. Nordstrom, A. Katz, B. Rozell, H. Westerblad, A. Arner, B. Vennstrom, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J. 26, 4535–4545 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  194. 194.
    L.P. Klieverik, H.P. Sauerwein, M.T. Ackermans, A. Boelen, A. Kalsbeek, E. Fliers, Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 294, E513–E520 (2008)PubMedCrossRefGoogle Scholar
  195. 195.
    C.B. Cook, I. Kakucska, R.M. Lechan, R.J. Koenig, Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 (1992)PubMedGoogle Scholar
  196. 196.
    L. Varela, N. Martinez-Sanchez, R. Gallego, M.J. Vazquez, J. Roa, M. Gandara, E. Schoenmakers, R. Nogueiras, K. Chatterjee, M. Tena-Sempere, C. Dieguez, M. Lopez, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 227, 209–222 (2012)PubMedCrossRefGoogle Scholar
  197. 197.
    A.C. Konner, R. Janoschek, L. Plum, S.D. Jordan, E. Rother, X. Ma, C. Xu, P. Enriori, B. Hampel, G.S. Barsh, C.R. Kahn, M.A. Cowley, F.M. Ashcroft, J.C. Bruning, Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007)PubMedCrossRefGoogle Scholar
  198. 198.
    A.C. Konner, T. Klockener, J.C. Bruning, Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol. Behav. 97, 632–638 (2009)PubMedCrossRefGoogle Scholar
  199. 199.
    D.M. Smith, S.R. Bloom, M.C. Sugden, M.J. Holness, Glucose transporter expression and glucose utilization in skeletal muscle and brown adipose tissue during starvation and re-feeding. Biochem. J. 282(Pt 1), 231–235 (1992)PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    M.C. Sugden, M.J. Holness, Physiological modulation of the uptake and fate of glucose in brown adipose tissue. Biochem. J. 295(Pt 1), 171–176 (1993)PubMedCentralPubMedCrossRefGoogle Scholar
  201. 201.
    K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRefGoogle Scholar
  202. 202.
    E. Fliers, F. Kreier, P.J. Voshol, L.M. Havekes, H.P. Sauerwein, A. Kalsbeek, R.M. Buijs, J.A. Romijn, White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003)PubMedCrossRefGoogle Scholar
  203. 203.
    L. Koch, F.T. Wunderlich, J. Seibler, A.C. Konner, B. Hampel, S. Irlenbusch, G. Brabant, C.R. Kahn, F. Schwenk, J.C. Bruning, Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 118, 2132–2147 (2008)PubMedCentralPubMedGoogle Scholar
  204. 204.
    T. Scherer, J. O’Hare, K. Diggs-Andrews, M. Schweiger, B. Cheng, C. Lindtner, E. Zielinski, P. Vempati, K. Su, S. Dighe, T. Milsom, M. Puchowicz, L. Scheja, R. Zechner, S.J. Fisher, S.F. Previs, C. Buettner, Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  205. 205.
    C. Buettner, R.C. Camacho, Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol. Metab. Clin. North Am. 37, 825–840 (2008)PubMedCrossRefGoogle Scholar
  206. 206.
    S. Obici, B.B. Zhang, G. Karkanias, L. Rossetti, Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002)PubMedCrossRefGoogle Scholar
  207. 207.
    S.J. Fisher, C.R. Kahn, Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 111, 463–468 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  209. 209.
    J. Havrankova, J. Roth, M. Brownstein, Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827–829 (1978)PubMedCrossRefGoogle Scholar
  210. 210.
    K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRefGoogle Scholar
  211. 211.
    N.L. Nguyen, J. Randall, B.W. Banfield, T.J. Bartness, Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R375–R386 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  212. 212.
    M. Ahmadian, R.E. Duncan, H.S. Sul, The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    K. Rahmouni, C.D. Sigmund, W.G. Haynes, A.L. Mark, Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  214. 214.
    S.M. Harlan, D.F. Guo, D.A. Morgan, C. Fernandes-Santos, K. Rahmouni, Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    A.L. Mark, A.W. Norris, K. Rahmouni, Sympathetic inhibition after bariatric surgery. Hypertension 64, 235–236 (2014)PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Patricia Seoane-Collazo
    • 1
    • 2
    Email author
  • Johan Fernø
    • 1
    • 3
  • Francisco Gonzalez
    • 4
    • 5
  • Carlos Diéguez
    • 1
    • 2
  • Rosaura Leis
    • 6
  • Rubén Nogueiras
    • 1
    • 2
  • Miguel López
    • 1
    • 2
    Email author
  1. 1.NeurObesity Group, Department of Physiology, CIMUSUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
  2. 2.CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de CompostelaSpain
  3. 3.Department of Clinical Science, K. G. Jebsen Center for Diabetes ResearchUniversity of BergenBergenNorway
  4. 4.Department of Surgery, CIMUSUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
  5. 5.Service of OphthalmologyComplejo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
  6. 6.Unit of Investigation in Nutrition, Growth and Human Development of Galicia, Pediatric Department (USC)Complexo Hospitalario Universitario de Santiago (IDIS/SERGAS)Santiago de CompostelaSpain

Personalised recommendations