Advertisement

Endocrine

, Volume 49, Issue 2, pp 415–421 | Cite as

Circulating endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction

  • Maria Ida MaiorinoEmail author
  • Giuseppe Bellastella
  • Michela Petrizzo
  • Elisabetta Della Volpe
  • Rosanna Orlando
  • Dario Giugliano
  • Katherine Esposito
Original Article

Abstract

Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells, thereby contributing to vascular repair. Recent studies demonstrated a reduction of EPCs in patients with diabetes mellitus or erectile dysfunction (ED). The aim of this study was to evaluate the circulating levels of different EPCs phenotypes and their relation with testosterone levels in young type 1 diabetic patients with ED. We studied 118 consecutively type 1 diabetic patients and 60 age-matched healthy controls. Erectile function was assessed by completing the International Index of Erectile Function (IIEF-5) and EPCs levels by flow cytometry. Testosterone concentrations were evaluated in all the study population. We identified 38 diabetic patients with ED (Group 1) and 80 patients without ED (Group 2). CD34+KDR+CD133+ cells were significantly lower in patients in Group 1 as compared with those in Group 2 [median and interquartile range, n/106 events, 12 (6–16) vs. 18 (13–22), P < 0.001)]. In all participants in the study, there was a significant correlation between circulating CD34+KDR+CD133+ cells and testosterone levels (r = 0.410, P < 0.001), which was highest in Group 1, intermediate in Group 2, and lowest in Group 3 (controls). There was a significant correlation between IIEF-5 score and both CD34+KDR+ (r = 0.459, P = 0.003) and CD34+KDR+CD133+ (r = 0.316, P = 0.050) cells among patients of Group 1, as well as between testosterone levels and most of the EPCs phenotypes. Finally, multivariate regression analysis identified levels of circulating CD34+KDR+ cells as an independent risk factor for ED (β-coefficient 0.348, P = 0.007). In conclusion, type 1 diabetic patients with ED show reduced levels of CD34+KDR+CD133+ cells, whose number correlates with IIEF. Further studies are needed to fully understand the exact mechanisms by which testosterone regulates vascular homeostasis.

Keywords

Endothelial progenitor cells Type 1 diabetes Erectile dysfunction Testosterone 

Notes

Acknowledgments

The authors thank Dr. Filomena Castaldo and Dr. Laura Olita for technical support and collection of data.

Conflict of interest

None.

References

  1. 1.
    D. Fedele, C. Coscelli, F. Santeusanio, A. Bortolotti, L. Chatenoud, E. Colli, M. Landoni, F. Parazzini, Erectile dysfunction in diabetic subjects in Italy. Gruppo Italiano Studio Deficit Erettile nei Diabetici. Diabetes Care 21, 1973–1977 (1998)CrossRefPubMedGoogle Scholar
  2. 2.
    C.G. Bacon, F.B. Hu, E. Giovannucci, D.B. Glasser, M.A. Mittleman, E.B. Rimm, Association of type and duration of diabetes with erectile dysfunction in a large cohort of men. Diabetes Care 25, 1458–1463 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    M. Buysschaert, J.L. Medina, M. Bergman, A. Shah, J. Lonier, Prediabetes and associated disorders. Endocrine (2014). doi: 10.1007/s12020-014-0436-2 PubMedGoogle Scholar
  4. 4.
    A. Sansone, F. Romanelli, D. Gianfrilli, A. Lenzi, Endocrine evaluation of erectile dysfunction. Endocrine 46, 423–430 (2014)CrossRefPubMedGoogle Scholar
  5. 5.
    S.C. Siu, S.K. Lo, K.W. Wong, K.M. Ip, Y.S. Wong, Prevalence of and risk factors for erectile dysfunction in Hong Kong diabetic patients. Diabet. Med. 18, 732–738 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    L.S. Malavige, S.D. Jayaratne, S.T. Kathriarachchi, S. Sivayogan, D.J. Fernando, J.C. Levy, Erectile dysfunction among men with diabetes is strongly associated with premature ejaculation and reduced libido. J. Sex. Med. 5, 2125–2134 (2008)PubMedGoogle Scholar
  7. 7.
    F. Giugliano, M.I. Maiorino, G. Bellastella, M. Gicchino, D. Giugliano, K. Esposito, Determinants of erectile dysfunction in type 2 diabetes. Int. J. Impot. Res. 22, 204–209 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    H. Sasaki, H. Yamasaki, K. Ogawa, K. Nanjo, R. Kawamori, Y. Iwamoto, S. Katayama, M. Shirai, Prevalence and risk factors for erectile dysfunction in Japanese diabetics. Diabetes Res. Clin. Pract. 70, 81–89 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    V.S. Thorve, A.D. Kshirsagar, N.S. Vyawahare, V.S. Joshi, K.G. Ingale, R.J. Mohite, Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J. Diabetes Complicat. 25, 129–136 (2011)CrossRefPubMedGoogle Scholar
  10. 10.
    J.Y. Dong, Y.H. Zhang, L.Q. Qin, Erectile dysfunction and risk of cardiovascular disease meta-analysis of prospective cohort studies. J. Am. Coll. Cardiol. 58, 1378–1385 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    G. Gandaglia, A. Salonia, N. Passoni, P. Montorsi, A. Briganti, F. Montorsi, Erectile dysfunction as a cardiovascular risk factor in patients with diabetes. Endocrine 43, 285–292 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    S.J. Turek, S.M. Hastings, J.K. Sun, G.L. King, H.A. Keenan, Sexual dysfunction as a marker of cardiovascular disease in males with 50 or more years of type 1 diabetes. Diabetes Care 36, 3222–3226 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    K. Esposito, M. Ciotola, F. Giugliano, L. Sardelli, F. Giugliano, M.I. Maiorino, F. Beneduce, M. De Sio, D. Giugliano, Phenotypic assessment of endothelial microparticles in diabetic and nondiabetic men with erectile dysfunction. J. Sex. Med. 5, 1436–1442 (2008)CrossRefPubMedGoogle Scholar
  14. 14.
    D.R. Meldrum, J.C. Gambone, M.A. Morris, D.A. Meldrum, K. Esposito, L.J. Ignarro, The link between erectile and cardiovascular health: the canary in the coal mine. Am. J. Cardiol. 15, 599–606 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Burger, R.M. Touyz, Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens. 6, 85–99 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    C. Urbich, S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 20, 343–353 (2004)CrossRefGoogle Scholar
  17. 17.
    M. Zhang, A.B. Malik, J. Rehman, Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol. 21, 224–228 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    J.M. Hill, G. Zalos, J.P. Halcox, W.H. Schenke, M.A. Waclawiw, A.A. Quyyumi, T. Finkel, Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    G.P. Fadini, E. Boscaro, S. de Kreutzenberg, C. Agostini, F. Seeger, S. Dimmeler, A. Zeiher, A. Tiengo, A. Avogaro, Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 33, 1097–1102 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    T. Hörtenhuber, B. Rami-Mehar, M. Satler, K. Nagl, C. Höbaus, F. Höllerl, R. Koppensteiner, G. Schernthaner, E. Schober, G.H. Schernthaner, Endothelial progenitor cells are related to glycemic control in children with type 1 diabetes over time. Diabetes Care 36, 1647–1653 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    C. Foresta, N. Caretta, A. Lana, A. Cabrelle, G. Palu, A. Ferlin, Circulating endothelial progenitor cells in subjects with erectile dysfunction. Int. J. Impot. Res. 17, 288–290 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    S. Dimmeler, A.M. Zeiher, Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med. 82, 671–677 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    C. Foresta, D. Zuccarello, L. De Toni, A. Garolla, N. Caretta, A. Ferlin, Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clin. Endocrinol. 68, 284–289 (2008)Google Scholar
  24. 24.
    J. Cai, Y. Hong, C. Weng, C. Tan, J. Imperato-McGinley, Y.S. Zhu, Androgen stimulates endothelial cell proliferation via an androgen receptor/VEGF/cyclin A-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol. 300, H1210–H1221 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    R.C. Rosen, J.C. Cappelleri, M.D. Smith, J. Lipsky, B.M. Pena, Development and evaluation of an abridged, 5-item version of the International Index of erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int. J. Impot. Res. 11, 319–326 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    M.I. Maiorino, E. Della Volpe, L. Olita, G. Bellastella, D. Giugliano, K. Esposito, Glucose variability inversely associates with endothelial progenitor cells in type 1 diabetes. Endocrine. doi: 10.1007/s12020-014-0277-z (2014)
  27. 27.
    F.C. Wu, A. Tajar, J.M. Beynon, S.R. Pye, A.J. Silman, J.D. Finn, T.W. O’Neill, G. Bartfai, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, M.E. Lean, N. Pendleton, M. Punab, Boonen Vanderschueren, D., Labrie, F., Huhtaniemi, I.T., EMAS Group.: Identification of late-onset hypogonadism in middleaged and elderly men. N. Engl. J. Med. 363, 123–135 (2010)CrossRefPubMedGoogle Scholar
  28. 28.
    M. Murata, H. Tamemoto, T. Otani, S. Jinbo, N. Ikeda, M. Kawakami, S.E. Ishikawa, Endothelial impairment and bone marrow-derived CD34(+)/133(+) cells in diabetic patients with erectile dysfunction. J. Diabetes Investig. 20, 526–533 (2012)CrossRefGoogle Scholar
  29. 29.
    S. La Vignera, R.A. Condorelli, S. Tumino, M. Di Mauro, E. Vicari, A.E. Calogero, Original evaluation of endothelial dysfunction in men with erectile dysfunction and metabolic syndrome. Int. J. Impot. Res. 24, 150–154 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    S. La Vignera, R. Condorelli, E. Vicari, R. D’Agata, A. Calogero, Original immunophenotype of blood endothelial progenitor cells and microparticles in patients with isolated arterial erectile dysfunction and late onset hypogonadism: effects of androgen replacement therapy. Aging Male 14, 183–189 (2011)CrossRefPubMedGoogle Scholar
  31. 31.
    R.A. Condorelli, A.E. Calogero, E. Vicari, L. di Pino, F. Giacone, L. Mongioì, S. la Vignera, Arterial erectile dysfunction and peripheral arterial disease: reliability of a new phenotype of endothelial progenitor cells and endothelial microparticles. J. Androl. 33, 1268–1675 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    S. Sen, S.P. McDonald, P.T. Coates, C.S. Bonder, Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin. Sci. (Lond.) 120, 263–283 (2011)Google Scholar
  33. 33.
    K. Esposito, M. Ciotola, M.I. Maiorino, F. Giugliano, R. Autorino, M. De Sio, E. Jannini, A. Lenzi, D. Giugliano, Circulating CD34+KDR+ endothelial progenitor cells correlate with erectile function and endothelial function in overweight men. J. Sex. Med. 6, 107–114 (2009)CrossRefPubMedGoogle Scholar
  34. 34.
    N. Werner, S. Kosiol, T. Schiegl, P. Ahlers, K. Walenta, A. Link, M. Böhm, G. Nickenig, Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 8, 999–1007 (2005)CrossRefGoogle Scholar
  35. 35.
    C. Schmidt-Lucke, L. Rössig, S. Fichtlscherer, M. Vasa, M. Britten, U. Kämper, S. Dimmeler, A.M. Zeiher, Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 7, 2981–2987 (2005)CrossRefGoogle Scholar
  36. 36.
    G.P. Fadini, A. Coracina, I. Baesso, C. Agostini, A. Tiengo, A. Avogaro, S.V. de Kreutzenberg, Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37, 2277–2282 (2006)CrossRefPubMedGoogle Scholar
  37. 37.
    K. Eisermann, C.J. Broderick, A. Bazarov, M.M. Moazam, G.C. Fraizer, Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol. Cancer. 12, 7 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    R. Liu, L. Ding, M.H. Yu, H.Q. Wang, W.C. Li, Z. Cao, P. Zhang, B.C. Yao, J. Tang, Q. Ke, T.Z. Huang, Effects of dihydrotestosterone on adhesion and proliferation via PI3-K/Akt signaling in endothelial progenitor cells. Endocrine 46, 634–643 (2014)CrossRefPubMedGoogle Scholar
  39. 39.
    E. García-Cruz, A. Leibar-Tamayo, J. Romero, M. Piqueras, P. Luque, O. Cardeñosa, A. Alcaraz, Metabolic syndrome in men with low testosterone levels: relationship with cardiovascular risk factors and comorbidities and with erectile dysfunction. J Sex Med. 10, 2529–2538 (2013)PubMedGoogle Scholar
  40. 40.
    C. Foresta, N. Caretta, A. Lana, L. De Toni, A. Biagioli, A. Ferlin, A. Garolla, Reduced number of circulating endothelial progenitor cells in hypogonadal men. J. Clin. Endocrinol. Metab. 91, 4599–4602 (2006)CrossRefPubMedGoogle Scholar
  41. 41.
    G.P. Fadini, M. Albiero, A. Cignarella, C. Bolego, C. Pinna, E. Boscaro, E. Pagnin, R. De Toni, S. de Kreutzenberg, C. Agostini, A. Avogaro, Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clin. Sci. (Lond). 7, 355–364 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maria Ida Maiorino
    • 1
    Email author
  • Giuseppe Bellastella
    • 1
  • Michela Petrizzo
    • 2
  • Elisabetta Della Volpe
    • 1
  • Rosanna Orlando
    • 1
  • Dario Giugliano
    • 1
  • Katherine Esposito
    • 3
  1. 1.Endocrinology and Metabolic Diseases Unit, Department of Medical, Surgical, Neurological, Metabolic Science and GeriatricsUniversity Hospital at Second University of NaplesNaplesItaly
  2. 2.IOS and Coleman – Medicina Futura Medical CenterCentro DirezionaleNaplesItaly
  3. 3.Department of Clinical and Experimental MedicineSecond University of NaplesNaplesItaly

Personalised recommendations