Endocrine

, Volume 48, Issue 2, pp 394–404 | Cite as

A four-season molecule: osteocalcin. Updates in its physiological roles

  • Giovanni Lombardi
  • Silvia Perego
  • Livio Luzi
  • Giuseppe Banfi
Review

Abstract

Osteocalcin (OC) is the main non-collagenous hydroxyapatite-binding protein synthesized by osteoblasts, odontoblasts, and hypertrophic chondrocytes. It has a regulatory role in mineralization and it is considered a marker of bone cell metabolism. Recent findings evidenced new extra-skeletal roles for OC, depicting it as a real hormone. OC shares many functional features with the common hormones, such as tissue-specific expression, circadian rhythm, and synthesis as a pre-pro-molecule. However, it has some peculiar features making it a unique molecule: OC exists in different forms based on the degree of carboxylation. Indeed, OC has three glutamic acid residues, in position 17, 21, and 24, which are subject to γ-carboxylation, through the action of a vitamin K-dependent γ-glutamyl carboxytransferase. The degree of carboxylation, and thus the negative charge density, determines the affinity for the calcium ions deposited in the extracellular matrix of the bone. The modulation of the carboxylation could, thus, represent the mechanism by which the body controls the circulating levels, and hence the hormonal function, of OC. There are evidences linking OC, and the bone metabolism, with a series of endocrine (glucose metabolism, energy metabolism, fertility) physiological (muscle activity) and pathological functions (ectopic calcification). Aim of this review is to give a full overview of the physiological roles of OC by collecting the newest experimental findings on this intriguing molecule.

Keywords

γ-Glutamyl transferases Bone turnover Energy metabolism Fertility Muscle strength Ectopic calcification 

Notes

Acknowledgments

This work has been funded by the Italian Ministry of Health.

References

  1. 1.
    P.V. Hauschka, J.B. Lian, D.E. Cole, C.M. Gundberg, Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69(3), 990–1047 (1989)PubMedGoogle Scholar
  2. 2.
    J.P. Brown, P.D. Delmas, L. Malaval, C. Edouard, M.C. Chapuy, P.J. Meunier, Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1(8386), 1091–1093 (1984)PubMedGoogle Scholar
  3. 3.
    G. Lombardi, P. Lanteri, A. Colombini, G. Banfi, Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin. Chem. Lab. Med. 50(5), 771–789 (2012)PubMedGoogle Scholar
  4. 4.
    C. Chenu, S. Colucci, M. Grano, P. Zigrino, R. Barattolo, G. Zambonin, N. Baldini, P. Vergnaud, P.D. Delmas, A.Z. Zallone, Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Cell Biol. 127(4), 1149–1158 (1994)PubMedGoogle Scholar
  5. 5.
    P.V. Bodine, B.S. Komm, Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone 25(5), 535–543 (1999)PubMedGoogle Scholar
  6. 6.
    M.S. Calvo, D.R. Eyre, C.M. Gundberg, Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 17(4), 333–368 (1996)PubMedGoogle Scholar
  7. 7.
    P.M. Kidd, Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. 15(3), 199–222 (2010)PubMedGoogle Scholar
  8. 8.
    S. Butenas, K.G. Mann, Blood coagulation. Biochemistry (Mosc) 67(1), 3–12 (2002)Google Scholar
  9. 9.
    N.K. Lee, H. Sowa, E. Hinoi, M. Ferron, J.D. Ahn, C. Confavreux, R. Dacquin, P.J. Mee, M.D. McKee, D.Y. Jung, Z. Zhang, J.K. Kim, F. Mauvais-Jarvis, P. Ducy, G. Karsenty, Endocrine regulation of energy metabolism by the skeleton. Cell 130(3), 456–469 (2007)PubMedCentralPubMedGoogle Scholar
  10. 10.
    E. Puchacz, J.B. Lian, G.S. Stein, J. Wozney, K. Huebner, C. Croce, Chromosomal localization of the human osteocalcin gene. Endocrinology 124(5), 2648–2650 (1989)PubMedGoogle Scholar
  11. 11.
    L. Cancela, C.L. Hsieh, U. Francke, P.A. Price, Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene. J. Biol. Chem. 265(25), 15040–15048 (1990)PubMedGoogle Scholar
  12. 12.
    A.J. Lee, S. Hodges, R. Eastell, Measurement of osteocalcin. Ann. Clin. Biochem. 37(Pt 4), 432–446 (2000)PubMedGoogle Scholar
  13. 13.
    P.V. Hauschka, S.A. Carr, K. Biemann, Primary structure of monkey osteocalcin. Biochemistry 21(4), 638–642 (1982)PubMedGoogle Scholar
  14. 14.
    Q.Q. Hoang, F. Sicheri, A.J. Howard, D.S. Yang, Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425(6961), 977–980 (2003)PubMedGoogle Scholar
  15. 15.
    C.M. Gundberg, M.E. Clough, The osteocalcin propeptide is not secreted in vivo or in vitro. J. Bone Miner. Res. 7(1), 73–80 (1992)PubMedGoogle Scholar
  16. 16.
    R. Houben, B.A. Soute, M.H. Knapen, C. Vermeer, Strategies for developing human osteocalcin standards: a critical evaluation. Scand. J. Clin. Lab. Invest. Suppl. 227, 100–104 (1997)PubMedGoogle Scholar
  17. 17.
    K.L. Berkner, Vitamin K-dependent carboxylation. Vitam. Horm. 78, 131–156 (2008)PubMedGoogle Scholar
  18. 18.
    R.A. Atkinson, J.S. Evans, P.V. Hauschka, B.A. Levine, R. Meats, J.T. Triffitt, A.S. Virdi, R.J. Williams, Conformational studies of osteocalcin in solution. Eur. J. Biochem. 232(2), 515–521 (1995)PubMedGoogle Scholar
  19. 19.
    P.V. Hauschka, Osteocalcin: the vitamin K-dependent Ca2+-binding protein of bone matrix. Haemostasis 16(3–4), 258–272 (1986)PubMedGoogle Scholar
  20. 20.
    P.V. Hauschka, S.A. Carr, Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry 21(10), 2538–2547 (1982)PubMedGoogle Scholar
  21. 21.
    S.L. Booth, J.W. Suttie, Dietary intake and adequacy of vitamin K. J. Nutr. 128(5), 785–788 (1998)PubMedGoogle Scholar
  22. 22.
    M.J. Shearer, X. Fu, S.L. Booth, Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv. Nutr. 3(2), 182–195 (2012)PubMedCentralPubMedGoogle Scholar
  23. 23.
    S.L. Booth, Roles for vitamin K beyond coagulation. Annu. Rev. Nutr. 29, 89–110 (2009)PubMedGoogle Scholar
  24. 24.
    A. Barchowsky, K. Tabrizi, R.S. Kent, A.R. Whorton, Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells. J. Clin. Invest. 83(4), 1153–1159 (1989)PubMedCentralPubMedGoogle Scholar
  25. 25.
    J.W. Nieves, Osteoporosis: the role of micronutrients. Am. J. Clin. Nutr. 81(5), 1232S–1239S (2005)PubMedGoogle Scholar
  26. 26.
    J. Oldenburg, M. Marinova, C. Muller-Reible, M. Watzka, The vitamin K cycle. Vitam. Horm. 78, 35–62 (2008)PubMedGoogle Scholar
  27. 27.
    M. Igarashi, Y. Yogiashi, M. Mihara, I. Takada, H. Kitagawa, S. Kato, Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol. Cell. Biol. 27(22), 7947–7954 (2007)PubMedCentralPubMedGoogle Scholar
  28. 28.
    T. Yokoyama, K. Miyazawa, M. Naito, J. Toyotake, T. Tauchi, M. Itoh, A. Yuo, Y. Hayashi, M.M. Georgescu, Y. Kondo, S. Kondo, K. Ohyashiki, Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy 4(5), 629–640 (2008)PubMedGoogle Scholar
  29. 29.
    T. Tsujioka, Y. Miura, T. Otsuki, Y. Nishimura, F. Hyodoh, H. Wada, T. Sugihara, The mechanisms of vitamin K2-induced apoptosis of myeloma cells. Haematologica 91(5), 613–619 (2006)PubMedGoogle Scholar
  30. 30.
    K. Nimptsch, S. Rohrmann, R. Kaaks, J. Linseisen, Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am. J. Clin. Nutr. 91(5), 1348–1358 (2010)PubMedGoogle Scholar
  31. 31.
    M.K. Shea, S.L. Booth, J.M. Massaro, P.F. Jacques, R.B. D’Agostino Sr, B. Dawson-Hughes, J.M. Ordovas, C.J. O’Donnell, S. Kathiresan, J.F. Keaney Jr, R.S. Vasan, E.J. Benjamin, Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring Study. Am. J. Epidemiol. 167(3), 313–320 (2008)PubMedCentralPubMedGoogle Scholar
  32. 32.
    M. Kaneki, T. Hosoi, Y. Ouchi, H. Orimo, Pleiotropic actions of vitamin K: protector of bone health and beyond? Nutrition 22(7–8), 845–852 (2006)PubMedGoogle Scholar
  33. 33.
    M.A. Rishavy, K.L. Berkner, Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv. Nutr. 3(2), 135–148 (2012)PubMedCentralPubMedGoogle Scholar
  34. 34.
    J. Stenflo, P. Fernlund, W. Egan, P. Roepstorff, Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. USA 71(7), 2730–2733 (1974)PubMedCentralPubMedGoogle Scholar
  35. 35.
    P.V. Hauschka, J.B. Lian, P.M. Gallop, Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc. Natl. Acad. Sci. USA 72(10), 3925–3929 (1975)PubMedCentralPubMedGoogle Scholar
  36. 36.
    P.A. Price, A.A. Otsuka, J.W. Poser, J. Kristaponis, N. Raman, Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 73(5), 1447–1451 (1976)PubMedCentralPubMedGoogle Scholar
  37. 37.
    S.L. Booth, A. Centi, S.R. Smith, C. Gundberg, The role of osteocalcin in human glucose metabolism: marker or mediator? Nat. Rev. Endocrinol. 9(1), 43–55 (2013)PubMedGoogle Scholar
  38. 38.
    J.C. McCann, B.N. Ames, Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am. J. Clin. Nutr. 90(4), 889–907 (2009)PubMedGoogle Scholar
  39. 39.
    M. Fusaro, G. Crepaldi, S. Maggi, A. D’Angelo, L. Calo, D. Miozzo, A. Fornasieri, M. Gallieni, Bleeding, vertebral fractures and vascular calcifications in patients treated with warfarin: hope for lower risks with alternative therapies. Curr. Vasc. Pharmacol. 9(6), 763–769 (2011)PubMedGoogle Scholar
  40. 40.
    P.A. Price, Gla-containing proteins of bone. Connect. Tissue Res. 21(1–4), 51–57 (1989)PubMedGoogle Scholar
  41. 41.
    P.V. Hauschka, F.H. Wians Jr, Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat. Rec. 224(2), 180–188 (1989)PubMedGoogle Scholar
  42. 42.
    P. Ducy, C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley, G. Karsenty, Increased bone formation in osteocalcin-deficient mice. Nature 382(6590), 448–452 (1996)PubMedGoogle Scholar
  43. 43.
    A.L. Boskey, S. Gadaleta, C. Gundberg, S.B. Doty, P. Ducy, G. Karsenty, Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23(3), 187–196 (1998)PubMedGoogle Scholar
  44. 44.
    A. Poundarik, C. Gundberg, D. Vashishth, Non-collageneous proteins influence bone mineral size, shape and orientation: a SAXS study. J. Bone. Miner. Res. 26(S1), S1 (2011)Google Scholar
  45. 45.
    P. Fratzl, O. Paris, K. Klaushofer, W.J. Landis, Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J. Clin. Invest. 97(2), 396–402 (1996)PubMedCentralPubMedGoogle Scholar
  46. 46.
    M. Murshed, T. Schinke, M.D. McKee, G. Karsenty, Extracellular matrix mineralization is regulated locally; different roles of two Gla-containing proteins. J. Cell Biol. 165(5), 625–630 (2004)PubMedCentralPubMedGoogle Scholar
  47. 47.
    J. Glowacki, J.B. Lian, Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell. Differ. 21(4), 247–254 (1987)PubMedGoogle Scholar
  48. 48.
    G. Karsenty, M. Ferron, The contribution of bone to whole-organism physiology. Nature 481(7381), 314–320 (2012)PubMedGoogle Scholar
  49. 49.
    C.B. Confavreux, Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney Int. Suppl. 121, S14–S19 (2011)PubMedGoogle Scholar
  50. 50.
    P.A. Price, J.W. Lothringer, S.A. Baukol, A.H. Reddi, Developmental appearance of the vitamin K-dependent protein of bone during calcification. Analysis of mineralizing tissues in human, calf, and rat. J. Biol. Chem. 256(8), 3781–3784 (1981)PubMedGoogle Scholar
  51. 51.
    M.J. Seibel, Molecular markers of bone turnover: biochemical, technical and analytical aspects. Osteoporos. Int. 11(Suppl. 6), S18–S29 (2000)PubMedGoogle Scholar
  52. 52.
    L.J. Sokoll, S.L. Booth, K.W. Davidson, G.E. Dallal, J.A. Sadowski, Diurnal variation in total and undercarboxylated osteocalcin: influence of increased dietary phylloquinone. Calcif. Tissue Int. 62(5), 447–452 (1998)PubMedGoogle Scholar
  53. 53.
    S.J. Hodges, K. Akesson, P. Vergnaud, K. Obrant, P.D. Delmas, Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. J. Bone Miner. Res. 8(10), 1241–1245 (1993)PubMedGoogle Scholar
  54. 54.
    S.J. Hodges, M.J. Pilkington, T.C. Stamp, A. Catterall, M.J. Shearer, L. Bitensky, J. Chayen, Depressed levels of circulating menaquinones in patients with osteoporotic fractures of the spine and femoral neck. Bone 12(6), 387–389 (1991)PubMedGoogle Scholar
  55. 55.
    S.L. Booth, K.L. Tucker, H. Chen, M.T. Hannan, D.R. Gagnon, L.A. Cupples, P.W. Wilson, J. Ordovas, E.J. Schaefer, B. Dawson-Hughes, D.P. Kiel, Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am. J. Clin. Nutr. 71(5), 1201–1208 (2000)PubMedGoogle Scholar
  56. 56.
    S.L. Booth, A.H. Lichtenstein, M. O’Brien-Morse, N.M. McKeown, R.J. Wood, E. Saltzman, C.M. Gundberg, Effects of a hydrogenated form of vitamin K on bone formation and resorption. Am. J. Clin. Nutr. 74(6), 783–790 (2001)PubMedGoogle Scholar
  57. 57.
    S.L. Booth, K.E. Broe, D.R. Gagnon, K.L. Tucker, M.T. Hannan, R.R. McLean, B. Dawson-Hughes, P.W. Wilson, L.A. Cupples, D.P. Kiel, Vitamin K intake and bone mineral density in women and men. Am. J. Clin. Nutr. 77(2), 512–516 (2003)PubMedGoogle Scholar
  58. 58.
    M. Kaneki, S.J. Hodges, T. Hosoi, S. Fujiwara, A. Lyons, S.J. Crean, N. Ishida, M. Nakagawa, M. Takechi, Y. Sano, Y. Mizuno, S. Hoshino, M. Miyao, S. Inoue, K. Horiki, M. Shiraki, Y. Ouchi, H. Orimo, Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17(4), 315–321 (2001)PubMedGoogle Scholar
  59. 59.
    E. O’Connor, C. Molgaard, K.F. Michaelsen, J. Jakobsen, C.J. Lamberg-Allardt, K.D. Cashman, Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls. Br. J. Nutr. 97(4), 661–666 (2007)PubMedGoogle Scholar
  60. 60.
    P. Szulc, M.C. Chapuy, P.J. Meunier, P.D. Delmas, Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J. Clin. Invest. 91(4), 1769–1774 (1993)PubMedCentralPubMedGoogle Scholar
  61. 61.
    P. Szulc, P.D. Delmas, Influence of vitamin D and retinoids on the gammacarboxylation of osteocalcin in human osteosarcoma MG63 cells. Bone 19(6), 615–620 (1996)PubMedGoogle Scholar
  62. 62.
    P. Szulc, M. Arlot, M.C. Chapuy, F. Duboeuf, P.J. Meunier, P.D. Delmas, Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J. Bone Miner. Res. 9(10), 1591–1595 (1994)PubMedGoogle Scholar
  63. 63.
    L. Plantalech, M. Guillaumont, P. Vergnaud, M. Leclercq, P.D. Delmas, Impairment of gamma carboxylation of circulating osteocalcin (bone Gla protein) in elderly women. J. Bone Miner. Res. 6(11), 1211–1216 (1991)PubMedGoogle Scholar
  64. 64.
    M.H. Knapen, H.G. Eisenwiener, C. Vermeer, Osteocalcin detection in aging serum and whole blood: stability of different osteocalcin fractions. Clin. Chim. Acta 256(2), 151–164 (1996)PubMedGoogle Scholar
  65. 65.
    N. Furusyo, T. Ihara, T. Hayashi, H. Ikezaki, K. Toyoda, E. Ogawa, K. Okada, M. Kainuma, M. Murata, J. Hayashi, The serum undercarboxylated osteocalcin level and the diet of a Japanese population: results from the Kyushu and Okinawa Population Study (KOPS). Endocrine 43(3), 635–642 (2013)PubMedGoogle Scholar
  66. 66.
    P. Vergnaud, P. Garnero, P.J. Meunier, G. Bréart, K. Kamihagi, P.D. Delmas, Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J. Clin. Endocrinol. Metab. 82(3), 719–724 (1997)PubMedGoogle Scholar
  67. 67.
    T. Sugiyama, S. Kawai, Carboxylation of osteocalcin may be related to bone quality: a possible mechanism of bone fracture prevention by vitamin K. J. Bone Miner. Metab. 19(3), 146–149 (2001)PubMedGoogle Scholar
  68. 68.
    V. Schwetz, T. Pieber, B. Obermayer-Pietsch, The endocrine role of the skeleton: background and clinical evidence. Eur. J. Endocrinol. 166(6), 959–967 (2012)PubMedGoogle Scholar
  69. 69.
    F. Oury, G. Sumara, O. Sumara, M. Ferron, H. Chang, C.E. Smith, L. Hermo, S. Suarez, B.L. Roth, P. Ducy, G. Karsenty, Endocrine regulation of male fertility by the skeleton. Cell 144(5), 796–809 (2011)PubMedCentralPubMedGoogle Scholar
  70. 70.
    P. Wellendorph, H. Brauner-Osborne, Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335, 37–46 (2004)PubMedGoogle Scholar
  71. 71.
    P. Wellendorph, K.B. Hansen, A. Balsgaard, J.R. Greenwood, J. Egebjerg, H. Brauner-Osborne, Deorphanization of GPRC6A: a promiscuous l-alpha-amino acid receptor with preference for basic amino acids. Mol. Pharmacol. 67(3), 589–597 (2005)PubMedGoogle Scholar
  72. 72.
    F. Oury, L. Khrimian, C.A. Denny, A. Gardin, A. Chamouni, N. Goeden, Y.Y. Huang, H. Lee, P. Srinivas, X.B. Gao, S. Suyama, T. Langer, J.J. Mann, T.L. Horvath, A. Bonnin, G. Karsenty, Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155(1), 228–241 (2013)PubMedGoogle Scholar
  73. 73.
    S. Adami, Bone health in diabetes: considerations for clinical management. Curr. Med. Res. Opin. 25(5), 1057–1072 (2009)PubMedGoogle Scholar
  74. 74.
    J. Wei, M. Ferron, C.J. Clarke, Y.A. Hannun, H. Jiang, W.S. Blaner, G. Karsenty, Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J. Clin. Invest. 124(4), 1781–1793 (2014)PubMedCentralGoogle Scholar
  75. 75.
    R.C. Riddle, T.L. Clemens, Insulin, osteoblasts, and energy metabolism: why bone counts calories. J. Clin. Invest. 124(4), 1465–1467 (2014)PubMedCentralPubMedGoogle Scholar
  76. 76.
    M. Ferron, J. Wei, T. Yoshizawa, A. Del Fattore, R.A. DePinho, A. Teti, P. Ducy, G. Karsenty, Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2), 296–308 (2010)PubMedCentralPubMedGoogle Scholar
  77. 77.
    J. Lacombe, G. Karsenty, M. Ferron, In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol. Metab. 2(4), 498–504 (2013)PubMedCentralPubMedGoogle Scholar
  78. 78.
    M. Ferron, E. Hinoi, G. Karsenty, P. Ducy, Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 105(13), 5266–5270 (2008)PubMedCentralPubMedGoogle Scholar
  79. 79.
    J. Wei, T. Hanna, N. Suda, G. Karsenty, P. Ducy, Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63(3), 1021–1031 (2014)PubMedCentralPubMedGoogle Scholar
  80. 80.
    K.J. Motyl, L.R. McCabe, A.V. Schwartz, Bone and glucose metabolism: a two-way street. Arch. Biochem. Biophys. 503(1), 2–10 (2010)PubMedCentralPubMedGoogle Scholar
  81. 81.
    T. Yoshizawa, E. Hinoi, D.Y. Jung, D. Kajimura, M. Ferron, J. Seo, J.M. Graff, J.K. Kim, G. Karsenty, The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J. Clin. Invest. 119(9), 2807–2817 (2009)PubMedCentralPubMedGoogle Scholar
  82. 82.
    M.T. Rached, A. Kode, B.C. Silva, D.Y. Jung, S. Gray, H. Ong, J.H. Paik, R.A. DePinho, J.K. Kim, G. Karsenty, S. Kousteni, FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 120(1), 357–368 (2010)PubMedCentralPubMedGoogle Scholar
  83. 83.
    O. Johnell, W.H. Scheele, Y. Lu, J.Y. Reginster, A.G. Need, E. Seeman, Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 87(3), 985–992 (2002)PubMedGoogle Scholar
  84. 84.
    M. Hirao, J. Hashimoto, W. Ando, T. Ono, H. Yoshikawa, Response of serum carboxylated and undercarboxylated osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. J. Bone Miner. Metab. 26(3), 260–264 (2008)PubMedGoogle Scholar
  85. 85.
    H. Aonuma, N. Miyakoshi, M. Hongo, Y. Kasukawa, Y. Shimada, Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J. Exp. Med. 218(3), 201–205 (2009)PubMedGoogle Scholar
  86. 86.
    A.L. Schafer, D.E. Sellmeyer, A.V. Schwartz, C.J. Rosen, E. Vittinghoff, L. Palermo, J.P. Bilezikian, D.M. Shoback, D.M. Black, Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J. Clin. Endocrinol. Metab. 96(12), E1982–E1989 (2011)PubMedCentralPubMedGoogle Scholar
  87. 87.
    N. Bunyaratavej, Monitoring of Risedronate by biochemical bone markers in clinical practice. J. Med. Assoc. Thai. 88(suppl 5), S34–S36 (2005)PubMedGoogle Scholar
  88. 88.
    K. Suzuki, S. Tsuji, Y. Fukushima, T. Nakase, M. Hamada, T. Tomita, H. Yoshikawa, Clinical results of alendronate monotherapy and combined therapy with menatetrenone (VitK(2)) in postmenopausal RA patients. Mod. Rheumatol. 23(3), 450–455 (2013)PubMedGoogle Scholar
  89. 89.
    M. Shiraki, Y. Yamazaki, Y. Shiraki, T. Hosoi, N. Tsugawa, T. Okano, High level of serum undercarboxylated osteocalcin in patients with incident fractures during bisphosphonate treatment. J. Bone Miner. Metab. 28(5), 578–584 (2010)PubMedGoogle Scholar
  90. 90.
    P. Vestergaard, Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate. Calcif. Tissue Int. 89(4), 265–270 (2011)PubMedGoogle Scholar
  91. 91.
    S. Dagdelen, D. Sener, M. Bayraktar, Influence of type 2 diabetes mellitus on bone mineral density response to bisphosphonates in late postmenopausal osteoporosis. Adv. Ther. 24(6), 1314–1320 (2007)PubMedGoogle Scholar
  92. 92.
    T.C. Brennan-Speranza, H. Henneicke, S.J. Gasparini, K.I. Blankenstein, U. Heinevetter, V.C. Cogger, D. Svistounov, Y. Zhang, G.J. Cooney, F. Buttgereit, C.R. Dunstan, C. Gundberg, H. Zhou, M.J. Seibel, Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J. Clin. Invest. 122(11), 4172–4189 (2012)PubMedCentralPubMedGoogle Scholar
  93. 93.
    C.B. Confavreux, R.L. Levine, G. Karsenty, A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol. Cell. Endocrinol. 310(1–2), 21–29 (2009)PubMedCentralPubMedGoogle Scholar
  94. 94.
    J.M. Gimble, M.E. Nuttall, The relationship between adipose tissue and bone metabolism. Clin. Biochem. 45(12), 874–879 (2012)PubMedGoogle Scholar
  95. 95.
    J.F. Griffith, D.K. Yeung, G.E. Antonio, F.K. Lee, A.W. Hong, S.Y. Wong, E.M. Lau, P.C. Leung, Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3), 945–951 (2005)PubMedGoogle Scholar
  96. 96.
    F. Elefteriou, Regulation of bone remodeling by the central and peripheral nervous system. Arch. Biochem. Biophys. 473(2), 231–236 (2008)PubMedCentralPubMedGoogle Scholar
  97. 97.
    T.A. Dardeno, S.H. Chou, H.S. Moon, J.P. Chamberland, C.G. Fiorenza, C.S. Mantzoros, Leptin in human physiology and therapeutics. Front. Neuroendocrinol. 31(3), 377–393 (2010)PubMedCentralPubMedGoogle Scholar
  98. 98.
    P. Ducy, M. Amling, S. Takeda, M. Priemel, A.F. Schilling, F.T. Beil, J. Shen, C. Vinson, J.M. Rueger, G. Karsenty, Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2), 197–207 (2000)PubMedGoogle Scholar
  99. 99.
    S. Takeda, F. Elefteriou, R. Levasseur, X. Liu, L. Zhao, K.L. Parker, D. Armstrong, P. Ducy, G. Karsenty, Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3), 305–317 (2002)PubMedGoogle Scholar
  100. 100.
    V.K. Yadav, F. Oury, N. Suda, Z.W. Liu, X.B. Gao, C. Confavreux, K.C. Klemenhagen, K.F. Tanaka, J.A. Gingrich, X.E. Guo, L.H. Tecott, J.J. Mann, R. Hen, T.L. Horvath, G. Karsenty, A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5), 976–989 (2009)PubMedCentralPubMedGoogle Scholar
  101. 101.
    K.J. Motyl, C.J. Rosen, Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie 94(10), 2089–2096 (2012)PubMedCentralPubMedGoogle Scholar
  102. 102.
    H.S. Hill, J. Grams, R.G. Walton, J. Liu, D.R. Moellering, W.T. Garvey, Carboxylated and uncarboxylated forms of osteocalcin directly modulate the glucose transport system and inflammation in adipocytes. Horm. Metab. Res. 46(5), 341–347 (2014)PubMedGoogle Scholar
  103. 103.
    G. Lombardi, P. Lanteri, G. Graziani, A. Colombini, G. Banfi, R. Corsetti, Bone and energy metabolism parameters in professional cyclists during the Giro d’Italia 3-weeks stage race. PLoS ONE 7(7), e42077 (2012)PubMedCentralPubMedGoogle Scholar
  104. 104.
    G. Karsenty, The mutual dependence between bone and gonads. J. Endocrinol. 213(2), 107–114 (2012)PubMedGoogle Scholar
  105. 105.
    B.V. Rosa, H.T. Blair, M.H. Vickers, C.G. Knight, P.C. Morel, E.C. Firth, Serum concentrations of fully and undercarboxylated osteocalcin do not vary between estrous cycle stages in Sprague-Dawley rats. Endocrine 44(3), 809–811 (2013)PubMedGoogle Scholar
  106. 106.
    M. Pi, L. Chen, M.Z. Huang, W. Zhu, B. Ringhofer, J. Luo, L. Christenson, B. Li, J. Zhang, P.D. Jackson, P. Faber, K.R. Brunden, J.J. Harrington, L.D. Quarles, GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3(12), e3858 (2008)PubMedCentralPubMedGoogle Scholar
  107. 107.
    G. Karsenty, F. Oury, Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell. Endocrinol. 382(1), 521–526 (2014)PubMedGoogle Scholar
  108. 108.
    B. Buday, F.P. Pach, B. Literati-Nagy, M. Vitai, Z. Vecsei, L. Koranyi, Serum osteocalcin is associated with improved metabolic state via adiponectin in females versus testosterone in males. Gender specific nature of the bone-energy homeostasis axis. Bone 57(1), 98–104 (2013)PubMedGoogle Scholar
  109. 109.
    F. Oury, M. Ferron, W. Huizhen, C. Confavreux, L. Xu, J. Lacombe, P. Srinivas, A. Chamouni, F. Lugani, H. Lejeune, T.R. Kumar, I. Plotton, G. Karsenty, Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Invest. 123(6), 2421–2433 (2013)PubMedCentralPubMedGoogle Scholar
  110. 110.
    N.S. Datta, Muscle-bone and fat-bone interactions in regulating bone mass: do PTH and PTHrP play any role? Endocrine (2014). doi:10.1007/s12020-014-0273-3 PubMedGoogle Scholar
  111. 111.
    I. Levinger, D. Scott, G.C. Nicholson, A.L. Stuart, G. Duque, T. McCorquodale, M. Herrmann, P.R. Ebeling, K.M. Sanders, Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone 64, 8–12 (2014)PubMedGoogle Scholar
  112. 112.
    S.K. Mishra, V. Misra, Muscle sarcopenia: an overview. Acta Myol. 22(2), 43–47 (2003)PubMedGoogle Scholar
  113. 113.
    L.A. Schaap, S.M. Pluijm, D.J. Deeg, M. Visser, Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am. J. Med. 119(6), 526.e9–526.e17 (2006)Google Scholar
  114. 114.
    I. Levinger, R. Zebaze, G. Jerums, D.L. Hare, S. Selig, E. Seeman, The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporos. Int. 22(5), 1621–1626 (2011)PubMedGoogle Scholar
  115. 115.
    Y. Rolland, G. Onder, J.E. Morley, S. Gillette-Guyonet, G. Abellan van Kan, B. Vellas, Current and future pharmacologic treatment of sarcopenia. Clin. Geriatr. Med. 27(3), 423–447 (2011)PubMedGoogle Scholar
  116. 116.
    J.M. Fernandez-Real, M. Izquierdo, F. Ortega, E. Gorostiaga, J. Gomez-Ambrosi, J.M. Moreno-Navarrete, G. Fruhbeck, C. Martinez, F. Idoate, J. Salvador, L. Forga, W. Ricart, J. Ibanez, The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J. Clin. Endocrinol. Metab. 94(1), 237–245 (2009)PubMedGoogle Scholar
  117. 117.
    J. Li, A.J. Flammer, R.E. Nelson, R. Gulati, P.A. Friedman, R.J. Thomas, N.P. Sandhu, M.K. Reriani, L.O. Lerman, A. Lerman, Normal vascular function as a prerequisite for the absence of coronary calcification in patients free of cardiovascular disease and diabetes. Circ. J. 76(11), 2705–2710 (2012)PubMedCentralPubMedGoogle Scholar
  118. 118.
    D. Yamanouchi, Y. Takei, K. Komori, Balanced mineralization in the arterial system: possible role of osteoclastogenesis/osteoblastogenesis in abdominal aortic aneurysm and stenotic disease. Circ. J. 76(12), 2732–2737 (2012)PubMedGoogle Scholar
  119. 119.
    A. Heiss, T. Eckert, A. Aretz, W. Richtering, W. van Dorp, C. Schafer, W. Jahnen-Dechent, Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J. Biol. Chem. 283(21), 14815–14825 (2008)PubMedGoogle Scholar
  120. 120.
    E. Theuwissen, E. Smit, C. Vermeer, The role of vitamin K in soft-tissue calcification. Adv. Nutr. 3(2), 166–173 (2012)PubMedCentralPubMedGoogle Scholar
  121. 121.
    J. Hjortnaes, S.E. New, E. Aikawa, Visualizing novel concepts of cardiovascular calcification. Trends Cardiovasc. Med. 23(3), 71–79 (2013)PubMedCentralPubMedGoogle Scholar
  122. 122.
    B.F. Stewart, D. Siscovick, B.K. Lind, J.M. Gardin, J.S. Gottdiener, V.E. Smith, D.W. Kitzman, C.M. Otto, Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J. Am. Coll. Cardiol. 29(3), 630–634 (1997)PubMedGoogle Scholar
  123. 123.
    C. Schafer, A. Heiss, A. Schwarz, R. Westenfeld, M. Ketteler, J. Floege, W. Muller-Esterl, T. Schinke, W. Jahnen-Dechent, The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112(3), 357–366 (2003)PubMedCentralPubMedGoogle Scholar
  124. 124.
    E. Aikawa, M. Nahrendorf, D. Sosnovik, V.M. Lok, F.A. Jaffer, M. Aikawa, R. Weissleder, Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115(3), 377–386 (2007)PubMedGoogle Scholar
  125. 125.
    P.G. van de Loo, B.A. Soute, L.J. van Haarlem, C. Vermeer, The effect of Gla-containing proteins on the precipitation of insoluble salts. Biochem. Biophys. Res. Commun. 142(1), 113–119 (1987)PubMedGoogle Scholar
  126. 126.
    P.A. Price, D. Toroian, J.E. Lim, Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. J. Biol. Chem. 284(25), 17092–17101 (2009)PubMedCentralPubMedGoogle Scholar
  127. 127.
    L.J. Schurgers, H. Aebert, C. Vermeer, B. Bultmann, J. Janzen, Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood 104(10), 3231–3232 (2004)PubMedGoogle Scholar
  128. 128.
    R. Koos, A.H. Mahnken, G. Muhlenbruch, V. Brandenburg, B. Pflueger, J.E. Wildberger, H.P. Kuhl, Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography. Am. J. Cardiol. 96(6), 747–749 (2005)PubMedGoogle Scholar
  129. 129.
    M. Hristova, C. van Beek, L.J. Schurgers, B. Lanske, J. Danziger, Rapidly progressive severe vascular calcification sparing the kidney allograft following warfarin initiation. Am. J. Kidney Dis. 56(6), 1158–1162 (2010)PubMedCentralPubMedGoogle Scholar
  130. 130.
    R.J. Rennenberg, B.J. van Varik, L.J. Schurgers, K. Hamulyak, H. Ten Cate, T. Leiner, C. Vermeer, P.W. de Leeuw, A.A. Kroon, Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood 115(24), 5121–5123 (2010)PubMedGoogle Scholar
  131. 131.
    B. Weijs, Y. Blaauw, R.J. Rennenberg, L.J. Schurgers, C.C. Timmermans, L. Pison, R. Nieuwlaat, L. Hofstra, A.A. Kroon, J. Wildberger, H.J. Crijns, Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients. Eur. Heart J. 32(20), 2555–2562 (2011)PubMedGoogle Scholar
  132. 132.
    C.M. Gundberg, J.B. Lian, S.L. Booth, Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv. Nutr. 3(2), 149–157 (2012)PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giovanni Lombardi
    • 1
  • Silvia Perego
    • 1
  • Livio Luzi
    • 2
    • 3
  • Giuseppe Banfi
    • 1
    • 2
  1. 1.Laboratory of Experimental Biochemistry & Molecular BiologyI.R.C.C.S. Istituto Ortopedico GaleazziMilanItaly
  2. 2.Department of Biomedical Sciences for HealthUniversity of MilanoMilanItaly
  3. 3.Division of Endocrinology and Metabolic DiseasesI.R.C.C.S. Policlinico San DonatoSan Donato MilaneseItaly

Personalised recommendations