Advertisement

Endocrine

, Volume 48, Issue 3, pp 1005–1009 | Cite as

The effect of anagliptin treatment on glucose metabolism and lipid metabolism, and oxidative stress in fasting and postprandial states using a test meal in Japanese men with type 2 diabetes

  • Hirokazu Kakuda
  • Junji KobayashiEmail author
  • Masahiro Kakuda
  • Junichi Yamakawa
  • Noboru Takekoshi
Research Letter

It has been generally recognized that postprandial hyperglycemia and hyperlipidemia are highly related to the development of atherosclerosis [1, 2]. Hyperglycemia is known to damage vascular endothelial cells, increase oxidative stress, promote the expression of adhesion molecule and inhibit nitric oxide (NO) production [3]. Remnant lipoprotein, an important component of postprandial hyperlipidemia, promotes foam cell formation of macrophages and proliferation of smooth muscle cells [4]. Dipeptidyl peptidase 4 (DPP-4) inhibitors have attracted attention as a new class of anti-diabetic agents for the treatment of type 2 diabetes [5]. Anagliptin, a member of the medication class of DPP-4 inhibitors, has been recently available in the market in Japan. Animal studies suggest that anagliptin treatment is associated with improvement of glucose tolerance either by amelioration of insulin resistance or enhancing insulin secretion [6] and the decrease in the development of atherosclerosis [7]....

Keywords

Anagliptin Test meal Adiponectin Remnant Renal function 8-OHdG 

Notes

Conflict of interest

There is no conflict of interest for all of the authors regarding this work.

References

  1. 1.
    DECODE Study Group, the European Diabetes Epidemiology Group., Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161, 397–405 (2001)CrossRefGoogle Scholar
  2. 2.
    D.B. Zilversmit, Atherogenesis. a postprandial phenomenon. Circulation 60, 473–485 (1979)CrossRefPubMedGoogle Scholar
  3. 3.
    D. Aronson, E.J. Rayfield, How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol. 1, 1 (2002)CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    T.B. Twickler, G.M. Dallinga-Thie, J.S. Cohn, M.J. Chapman, Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation 109, 1918–1925 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548), 1696–1705 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    K. Nakaya, N. Kubota, I. Takamoto, T. Kubota, H. Katsuyama, H. Sato, K. Tokuyama, S. Hashimoto, M. Goto, T. Jomori, K. Ueki, T. Kadowaki, Dipeptidyl peptidase-4 inhibitor anagliptin ameliorates diabetes in mice with haploinsufficiency of glucokinase on a high-fat diet. Metabolism 62, 939–951 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    N. Ervinna, T. Mita, E. Yasunari, K. Azuma, R. Tanaka, S. Fujimura, D. Sukmawati, T. Nomiyama, A. Kanazawa, R. Kawamori, Y. Fujitani, H. Watada, A DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. Endocrinology 154, 1260–1270 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    H. Kakuda, J. Kobayashi, M. Nakato, N. Takekoshi, Short-term effect of pitavastatin treatment on glucose and lipid metabolism and oxidative stress in fasting and postprandial state using a test meal in Japanese men. Cholesterol 2013, 314170 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    N. Matikainen, S. Manttari, A. Schweizer, A. Ulvestad, D. Mills, B.E. Dunning, J.E. Foley, M.R. Taskinen, Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49, 2049–2057 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    A.J. Tremblay, B. Lamarche, C.F. Deacon, S.J. Weisnagel, P. Couture, Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes. Metab. 13, 366–373 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Zander, S. Madsbad, J.L. Madsen, J.J. Holst, Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and betacell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    X. Qin, H. Shen, M. Liu, Q. Yang, S. Zheng, M. Sabo, D.A. D’Alessio, P. Tso, GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am. J. Physiol. Gastrointest. Liver. Physiol. 288, 943–949 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Wojdemann, A. Wettergren, B. Sternby, J.J. Holst, S. Larsen, J.F. Rehfeld, O. Olsen, Inhibition of human gastric lipase secretion by glucagon-like peptide-1. Dig. Dis. Sci. 43, 799–805 (1998)CrossRefPubMedGoogle Scholar
  14. 14.
    J. Hsieh, C. Longuet, C.L. Baker, B. Qin, L.M. Federico, D.J. Drucker, K. Adeli, The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53, 552–561 (2010)CrossRefPubMedGoogle Scholar
  15. 15.
    T. Wasada, K. McCorkle, V. Harris, K. Kawai, B. Howard, R.H. Unger, Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J. Clin. Invest. 68, 1106–1107 (1981)CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    T. Eglit, I. Ringmets, M. Lember, Obesity, high-molecular-weight (HMW) adiponectin, and metabolic risk factors: prevalence and gender-specific associations in Estonia. PLoS ONE 8, e73273 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    G. Annuzzi, L. Bozzetto, L. Patti, C. Santangelo, R. Giacco, L. Di Marino et al., Type 2 diabetes mellitus is characterized by reduced postprandial adiponectin response: a possible link with diabetic postprandial dyslipidemia. Metabolism 59, 567–574 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    D.C. Chan, G.F. Watts, T.W. Ng, Y. Uchida, N. Sakai, S. Yamashita, P.H. Barrett, Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism. Clin. Chem. 51, 578–585 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    S. Bansal, J.E. Buring, N. Rifai, S. Mora, F.M. Sacks, P.M. Ridker, Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298, 309–316 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    A.J. van Oostrom, T.P. Sijmonsma, C. Verseyden, E.H. Jansen, E.J. de Koning, T.J. Rabelink, M. Castro Cabezas, Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J. Lipid Res. 44, 576–583 (2003)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hirokazu Kakuda
    • 1
  • Junji Kobayashi
    • 2
    Email author
  • Masahiro Kakuda
    • 1
  • Junichi Yamakawa
    • 2
  • Noboru Takekoshi
    • 3
  1. 1.Kakuda ClinicKahokuJapan
  2. 2.Department of General MedicineKanazawa Medical UniversityKahokuJapan
  3. 3.Kanazawa Medical UniversityKazhokuJapan

Personalised recommendations