, Volume 48, Issue 1, pp 36–46

Epigenetic effects of paternal diet on offspring: emphasis on obesity



Overnutrition, obesity, and the rise in associated comorbidities are widely recognized as preventable challenges to global health. Behavioral, metabolic, and epigenetic influences that alter the epigenome, when passed on to offspring, can increase their risk of developing an altered metabolic profile. This review is focused on the role of paternal inheritance as demonstrated by clinical, epidemiological, and experimental models. Development of additional experimental models that resemble the specific epigenetic sensitive situations in human studies will be essential to explore paternally induced trans-generational effects that are mediated, primarily, by epigenetic effects. Further elucidation of epigenetic marks will help identify preventive and therapeutic targets, which in combination with healthy lifestyle choices, can diminish the growing tide of obesity, type 2 diabetes, and other related disorders.


Epigenetic Metabolic disease Obesity Paternal diet Trans-generational 


  1. 1.
    C.L. Ogden, M.D. Carroll, B.K. Kit, K.M. Flegal, Prevalence of obesity in the United States, 2009–2010. NCHS Data Br. 82, 1–8 (2012)Google Scholar
  2. 2.
    C.L. Ogden, M.D. Carroll, B.K. Kit, K.M. Flegal, Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA, J. Am. Med. Assoc. 307, 483–490 (2012)CrossRefGoogle Scholar
  3. 3.
    K.M. Flegal, M.D. Carroll, B.K. Kit, C.L. Ogden, Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA, J. Am. Med. Assoc. 307, 491–497 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Bouchard, Childhood obesity: are genetic differences involved? Am. J. Clin. Nutr. 89, 1494S–1501S (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    R.A. Waterland, Epigenetic epidemiology of obesity: application of epigenomic technology. Nutr. Rev. 66(Suppl 1), S21–23 (2008)CrossRefPubMedGoogle Scholar
  6. 6.
    R.C. Whitaker, J.A. Wright, M.S. Pepe, K.D. Seidel, W.H. Dietz, Predicting obesity in young adulthood from childhood and parental obesity. New Engl. J. Med. 337, 869–873 (1997)CrossRefPubMedGoogle Scholar
  7. 7.
    M.E. Pembrey, L.O. Bygren, G. Kaati, S. Edvinsson, K. Northstone, M. Sjostrom, J. Golding, A.S. Team, Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    C. Bouchard, A. Tremblay, J.P. Despres, A. Nadeau, P.J. Lupien, G. Theriault, J. Dussault, S. Moorjani, S. Pinault, G. Fournier, The response to long-term overfeeding in identical twins. New Engl. J. Med. 322, 1477–1482 (1990)CrossRefPubMedGoogle Scholar
  9. 9.
    J. Wardle, S. Carnell, C.M. Haworth, R. Plomin, Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr. 87, 398–404 (2008)PubMedGoogle Scholar
  10. 10.
    A.P. Wolffe, D. Guschin, Review: chromatin structural features and targets that regulate transcription. J. Struct. Biol. 129, 102–122 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    A.F. Fleisch, R.O. Wright, A.A. Baccarelli, Environmental epigenetics: a role in endocrine disease? J. Mol. Endocrinol. 49(2), R61–R67 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    J.K. Kim, M. Samaranayake, S. Pradhan, Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66, 596–612 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    S. Sharma, T.K. Kelly, P.A. Jones, Epigenetics in cancer. Carcinogenesis 31, 27–36 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    F.I. Milagro, M.L. Mansego, C. De Miguel, J.A. Martinez, Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol. Asp. Med. 34(4), 782–812 (2013)CrossRefGoogle Scholar
  15. 15.
    J.C. Jimenez-Chillaron, R. Diaz, D. Martinez, T. Pentinat, M. Ramon-Krauel, S. Ribo, T. Plosch, The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94(11), 2242–2263 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    S.U. Devaskar, S. Raychaudhuri, Epigenetics–a science of heritable biological adaptation. Pediatr. Res. 61, 1R–4R (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Marti, J. Ordovas, Epigenetics lights up the obesity field. Obes. Facts 4, 187–190 (2011)CrossRefPubMedGoogle Scholar
  18. 18.
    A.C. Ferguson-Smith, M.E. Patti, You are what your dad ate. Cell Metab. 13, 115–117 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    B.R. Carone, L. Fauquier, N. Habib, J.M. Shea, C.E. Hart, R. Li, C. Bock, C. Li, H. Gu, P.D. Zamore, A. Meissner, Z. Weng, H.A. Hofmann, N. Friedman, O.J. Rando, Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    A. Ferguson-Smith, S.P. Lin, C.E. Tsai, N. Youngson, M. Tevendale, Genomic imprinting–insights from studies in mice. Semin. Cell Dev. Biol. 14, 43–49 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Soubry, J.M. Schildkraut, A. Murtha, F. Wang, Z. Huang, A. Bernal, J. Kurtzberg, R.L. Jirtle, S.K. Murphy, C. Hoyo, Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a newborn epigenetics study (NEST) cohort. BMC Med. 11, 29 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    M.J. Luteijn, R.F. Ketting, PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 14, 523–534 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    C. Gallou-Kabani, C. Junien, Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54, 1899–1906 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    E.L. Sullivan, K.L. Grove, Metabolic imprinting in obesity. Forum Nutr. 63, 186–194 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    F. Perera, J. Herbstman, Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    W. Reik, W. Dean, J. Walter, Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001)CrossRefPubMedGoogle Scholar
  27. 27.
    L. Shi, J. Wu, Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol. 7, 59 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    B.T. Heijmans, E.W. Tobi, A.D. Stein, H. Putter, G.J. Blauw, E.S. Susser, P.E. Slagboom, L.H. Lumey, Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 105, 17046–17049 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    H.T. Bjornsson, M.I. Sigurdsson, M.D. Fallin, R.A. Irizarry, T. Aspelund, H. Cui, W. Yu, M.A. Rongione, T.J. Ekstrom, T.B. Harris, L.J. Launer, G. Eiriksdottir, M.F. Leppert, C. Sapienza, V. Gudnason, A.P. Feinberg, Intra-individual change over time in DNA methylation with familial clustering. JAMA, J. Am. Med. Assoc. 299, 2877–2883 (2008)CrossRefGoogle Scholar
  30. 30.
    M.K. Skinner, Metabolic disorders: Fathers’ nutritional legacy. Nature 467, 922–923 (2010)CrossRefPubMedGoogle Scholar
  31. 31.
    N.A. Youngson, E. Whitelaw, The effects of acquired paternal obesity on the next generation. Asian J. Androl. 13, 195–196 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    S.S. Hammoud, D.A. Nix, H. Zhang, J. Purwar, D.T. Carrell, B.R. Cairns, Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009)PubMedCentralPubMedGoogle Scholar
  33. 33.
    K.D. Wagner, N. Wagner, H. Ghanbarian, V. Grandjean, P. Gounon, F. Cuzin, M. Rassoulzadegan, RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev. Cell 14, 962–969 (2008)CrossRefPubMedGoogle Scholar
  34. 34.
    L. Siggens, K. Ekwall, Epigenetics, chromatin and genome organisation: recent advances from the ENCODE project. J. Int. Med. (2014). doi:10.1111/joim.12231 Google Scholar
  35. 35.
    U. Brykczynska, M. Hisano, S. Erkek, L. Ramos, E.J. Oakeley, T.C. Roloff, C. Beisel, D. Schubeler, M.B. Stadler, A.H. Peters, Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687 (2010)CrossRefPubMedGoogle Scholar
  36. 36.
    S. Erkek, M. Hisano, C.Y. Liang, M. Gill, R. Murr, J. Dieker, D. Schubeler, J. van der Vlag, M.B. Stadler, A.H. Peters, Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. Mol. Biol. 20, 868–875 (2013)CrossRefPubMedGoogle Scholar
  37. 37.
    A. Arpanahi, M. Brinkworth, D. Iles, S.A. Krawetz, A. Paradowska, A.E. Platts, M. Saida, K. Steger, P. Tedder, D. Miller, Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 19, 1338–1349 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    S.S. Hammoud, D.A. Nix, A.O. Hammoud, M. Gibson, B.R. Cairns, D.T. Carrell, Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum. Reprod. 26, 2558–2569 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    A.M. Roccaro, A. Sacco, X. Jia, A.K. Azab, P. Maiso, H.T. Ngo, F. Azab, J. Runnels, P. Quang, I.M. Ghobrial, microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116, 1506–1514 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    H. Denis, M.N. Ndlovu, F. Fuks, Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 12, 647–656 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    F.J. Ortega, J.M. Mercader, V. Catalan, J.M. Moreno-Navarrete, N. Pueyo, M. Sabater, J. Gomez-Ambrosi, R. Anglada, J.A. Fernandez-Formoso, W. Ricart, G. Fruhbeck, J.M. Fernandez-Real, Targeting the circulating microRNA signature of obesity. Clin. Chem. 59, 781–792 (2013)CrossRefPubMedGoogle Scholar
  42. 42.
    H.W. Bakos, M. Mitchell, B.P. Setchell, M. Lane, The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int. J. Androl. 34, 402–410 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    M. Mitchell, H.W. Bakos, M. Lane, Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353 (2011)CrossRefPubMedGoogle Scholar
  44. 44.
    B.I. Ghanayem, R. Bai, G.E. Kissling, G. Travlos, U. Hoffler, Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol. Reprod. 82, 96–104 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    N.K. Binder, N.J. Hannan, D.K. Gardner, Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7, e52304 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    T. Fullston, E.M. Ohlsson Teague, N.O. Palmer, M.J. Deblasio, M. Mitchell, M. Corbett, C.G. Print, J.A. Owens, M. Lane, Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013)CrossRefPubMedGoogle Scholar
  47. 47.
    T. Fullston, N.O. Palmer, J.A. Owens, M. Mitchell, H.W. Bakos, M. Lane, Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400 (2012)CrossRefPubMedGoogle Scholar
  48. 48.
    N.O. McPherson, T. Fullston, H.W. Bakos, B.P. Setchell, M. Lane, Obese father’s metabolic state, adiposity, and reproductive capacity indicate son’s reproductive health. Fertil. Steril. 101, 865–873 (2014)CrossRefPubMedGoogle Scholar
  49. 49.
    N.O. Palmer, H.W. Bakos, J.A. Owens, B.P. Setchell, M. Lane, Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am. J. Physiol. Endocrinol. Metab. 302, E768–780 (2012)CrossRefPubMedGoogle Scholar
  50. 50.
    N.O. McPherson, H.W. Bakos, J.A. Owens, B.P. Setchell, M. Lane, Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth. PLoS One 8, e71459 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    K. Iqbal, S.G. Jin, G.P. Pfeifer, P.E. Szabo, Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. USA 108, 3642–3647 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    S. Yamaguchi, L. Shen, Y. Liu, D. Sendler, Y. Zhang, Role of Tet1 in erasure of genomic imprinting. Nature 504, 460–464 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    H.W. Bakos, R.C. Henshaw, M. Mitchell, M. Lane, Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil. Steril. 95, 1700–1704 (2011)CrossRefPubMedGoogle Scholar
  54. 54.
    O. Tunc, H.W. Bakos, K. Tremellen, Impact of body mass index on seminal oxidative stress. Andrologia 43, 121–128 (2011)CrossRefPubMedGoogle Scholar
  55. 55.
    N.O. Palmer, H.W. Bakos, T. Fullston, M. Lane, Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2, 253–263 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    D.C. Benyshek, C.S. Johnston, J.F. Martin, Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 49, 1117–1119 (2006)CrossRefPubMedGoogle Scholar
  57. 57.
    G.A. Dunn, T.L. Bale, Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    K.E. Rhee, S. Phelan, J. McCaffery, Early determinants of obesity: genetic, epigenetic, and in utero influences. Int. J. Pediatr. 2012, 463850 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    D.C. Dolinoy, R. Das, J.R. Weidman, R.L. Jirtle, Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr. Res. 61, 30R–37R (2007)CrossRefPubMedGoogle Scholar
  60. 60.
    C. Li, L.S. Balluz, E.S. Ford, C.A. Okoro, G. Zhao, C. Pierannunzi, A comparison of prevalence estimates for selected health indicators and chronic diseases or conditions from the Behavioral Risk Factor Surveillance System, the National Health Interview Survey, and the National Health and Nutrition Examination Survey, 2007–2008. Prev. Med. 54, 381–387 (2012)CrossRefPubMedGoogle Scholar
  61. 61.
    G. Kaati, L.O. Bygren, S. Edvinsson, Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002)CrossRefPubMedGoogle Scholar
  62. 62.
    L.O. Bygren, G. Kaati, S. Edvinsson, Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta. Biotheor. 49, 53–59 (2001)CrossRefPubMedGoogle Scholar
  63. 63.
    I. Ohlund, O. Hernell, A. Hornell, H. Stenlund, T. Lind, BMI at 4 years of age is associated with previous and current protein intake and with paternal BMI. Eur. J. Clin. Nutr. 64, 138–145 (2010)CrossRefPubMedGoogle Scholar
  64. 64.
    P. Magnus, H.K. Gjessing, A. Skrondal, R. Skjaerven, Paternal contribution to birth weight. J. Epidemiol. Community Health 55, 873–877 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    B. Knight, B.M. Shields, A. Hill, R.J. Powell, D. Wright, A.T. Hattersley, The impact of maternal glycemia and obesity on early postnatal growth in a nondiabetic Caucasian population. Diabetes Care 30, 777–783 (2007)CrossRefPubMedGoogle Scholar
  66. 66.
    R. Cooper, E. Hypponen, D. Berry, C. Power, Associations between parental and offspring adiposity up to midlife: the contribution of adult lifestyle factors in the 1958 British birth cohort study. Am. J. Clin. Nutr. 92, 946–953 (2010)CrossRefPubMedGoogle Scholar
  67. 67.
    L. Li, C. Law, R. Lo Conte, C. Power, Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am. J. Clin. Nutr. 89, 551–557 (2009)CrossRefPubMedGoogle Scholar
  68. 68.
    B. Linares Segovia, M. Gutierrez Tinoco, A. Izquierdo Arrizon, J.M. Guizar Mendoza, N. Amador Licona, Long-term consequences for offspring of paternal diabetes and metabolic syndrome. Exp. Diabetes Res. (2012). doi:10.1155/2012/684562 PubMedCentralPubMedGoogle Scholar
  69. 69.
    E.M. Perez-Pastor, B.S. Metcalf, J. Hosking, A.N. Jeffery, L.D. Voss, T.J. Wilkin, Assortative weight gain in mother-daughter and father–son pairs: an emerging source of childhood obesity. Longitudinal study of trios (Early Bird 43). Int. J. Obes. (Lond) 33, 727–735 (2009)CrossRefGoogle Scholar
  70. 70.
    S. Kumar, M. Raju, N. Gowda, Influence of parental obesity on school children. Indian J. Pediatr. 77, 255–258 (2010)CrossRefPubMedGoogle Scholar
  71. 71.
    S. Leary, G. Davey Smith, A. Ness, No evidence of large differences in mother-daughter and father–son body mass index concordance in a large UK birth cohort. Int. J. Obes. (Lond) 34, 1191–1192 (2010)CrossRefGoogle Scholar
  72. 72.
    S. Danielzik, K. Langnase, M. Mast, C. Spethmann, M.J. Muller, Impact of parental BMI on the manifestation of overweight 5–7 year old children. Eur. J. Nutr. 41, 132–138 (2002)CrossRefPubMedGoogle Scholar
  73. 73.
    K.L. Whitaker, M.J. Jarvis, R.J. Beeken, D. Boniface, J. Wardle, Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am. J. Clin. Nutr. 91, 1560–1567 (2010)CrossRefPubMedGoogle Scholar
  74. 74.
    R. Figueroa-Colon, R.B. Arani, M.I. Goran, R.L. Weinsier, Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. Am. J. Clin. Nutr. 71, 829–834 (2000)PubMedGoogle Scholar
  75. 75.
    V. Svensson, J.A. Jacobsson, R. Fredriksson, P. Danielsson, T. Sobko, H.B. Schioth, C. Marcus, Associations between severity of obesity in childhood and adolescence, obesity onset and parental BMI: a longitudinal cohort study. Int. J. Obes. (Lond) 35, 46–52 (2011)CrossRefGoogle Scholar
  76. 76.
    A.M. Linabery, R.W. Nahhas, W. Johnson, A.C. Choh, B. Towne, A.O. Odegaard, S.A. Czerwinski, E.W. Demerath, Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the Fels longitudinal study. Pediatr. Obes. 8, 159–169 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Y.P. Chen, X.M. Xiao, J. Li, C. Reichetzeder, Z.N. Wang, B. Hocher, Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS One 7, e36329 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    C. Le Stunff, D. Fallin, P. Bougneres, Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nat. Genet. 29, 96–99 (2001)CrossRefPubMedGoogle Scholar
  79. 79.
    S.T. Bennett, A.J. Wilson, L. Esposito, N. Bouzekri, D.E. Undlien, F. Cucca, L. Nistico, R. Buzzetti, E. Bosi, F. Pociot, J. Nerup, A. Cambon-Thomsen, A. Pugliese, J.P. Shield, P.A. McKinney, S.C. Bain, C. Polychronakos, J.A. Todd, Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele The IMDIAB Group. Nat. Genet. 17, 350–352 (1997)CrossRefPubMedGoogle Scholar
  80. 80.
    S.J. Huxtable, P.J. Saker, L. Haddad, M. Walker, T.M. Frayling, J.C. Levy, G.A. Hitman, S. O’Rahilly, A.T. Hattersley, M.I. McCarthy, Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 49, 126–130 (2000)CrossRefPubMedGoogle Scholar
  81. 81.
    R.S. Lindsay, D. Dabelea, J. Roumain, R.L. Hanson, P.H. Bennett, W.C. Knowler, Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 49, 445–449 (2000)CrossRefPubMedGoogle Scholar
  82. 82.
    A. Penesova, J.C. Bunt, C. Bogardus, J. Krakoff, Effect of paternal diabetes on pre-diabetic phenotypes in adult offspring. Diabetes Care 33, 1823–1828 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    A.J. Stunkard, J.R. Harris, N.L. Pedersen, G.E. McClearn, The body-mass index of twins who have been reared apart. New Engl. J. Med. 322, 1483–1487 (1990)CrossRefPubMedGoogle Scholar
  84. 84.
    T.I. Sorensen, C. Holst, A.J. Stunkard, Childhood body mass index–genetic and familial environmental influences assessed in a longitudinal adoption study. Int. J. Obes. Relat. Metab. Disord. 16, 705–714 (1992)PubMedGoogle Scholar
  85. 85.
    A.J. Stunkard, T.I. Sorensen, C. Hanis, T.W. Teasdale, R. Chakraborty, W.J. Schull, F. Schulsinger, An adoption study of human obesity. New Engl. J. Med. 314, 193–198 (1986)CrossRefPubMedGoogle Scholar
  86. 86.
    V. Lecomte, N.A. Youngson, C.A. Maloney, M.J. Morris, Parental programming: How can we improve study design to discern the molecular mechanisms? BioEssays 35, 787–793 (2013)CrossRefPubMedGoogle Scholar
  87. 87.
    D.K. Belyaev, A.O. Ruvinsky, L.N. Trut, Inherited activation-inactivation of the star gene in foxes: its bearing on the problem of domestication. J. Hered. 72, 267–274 (1981)PubMedGoogle Scholar
  88. 88.
    H.D. Morgan, H.G. Sutherland, D.I. Martin, E. Whitelaw, Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999)CrossRefPubMedGoogle Scholar
  89. 89.
    V.K. Rakyan, S. Chong, M.E. Champ, P.C. Cuthbert, H.D. Morgan, K.V. Luu, E. Whitelaw, Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 100, 2538–2543 (2003)CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    R. Lambrot, C. Xu, S. Saint-Phar, G. Chountalos, T. Cohen, M. Paquet, M. Suderman, M. Hallett, S. Kimmins, Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    L.M. Anderson, L. Riffle, R. Wilson, G.S. Travlos, M.S. Lubomirski, W.G. Alvord, Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22, 327–331 (2006)CrossRefPubMedGoogle Scholar
  92. 92.
    G.A. Dunn, T.L. Bale, Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150, 4999–5009 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    J.C. Jimenez-Chillaron, E. Isganaitis, M. Charalambous, S. Gesta, T. Pentinat-Pelegrin, R.R. Faucette, J.P. Otis, A. Chow, R. Diaz, A. Ferguson-Smith, M.E. Patti, Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    P.J. Enriori, A.E. Evans, P. Sinnayah, E.E. Jobst, L. Tonelli-Lemos, S.K. Billes, M.M. Glavas, B.E. Grayson, M. Perello, E.A. Nillni, K.L. Grove, M.A. Cowley, Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007)CrossRefPubMedGoogle Scholar
  95. 95.
    R.A. Koza, L. Nikonova, J. Hogan, J.S. Rim, T. Mendoza, C. Faulk, J. Skaf, L.P. Kozak, Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet. 2, e81 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  96. 96.
    S.N. Yazbek, S.H. Spiezio, J.H. Nadeau, D.A. Buchner, Ancestral paternal genotype controls body weight and food intake for multiple generations. Hum. Mol. Genet. 19, 4134–4144 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    S.F. Ng, R.C. Lin, D.R. Laybutt, R. Barres, J.A. Owens, M.J. Morris, Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010)CrossRefPubMedGoogle Scholar
  98. 98.
    T. Pentinat, M. Ramon-Krauel, J. Cebria, R. Diaz, J.C. Jimenez-Chillaron, Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010)CrossRefPubMedGoogle Scholar
  99. 99.
    R. Mashoodh, B. Franks, J.P. Curley, F.A. Champagne, Paternal social enrichment effects on maternal behavior and offspring growth. Proc. Natl. Acad. Sci. USA 109(Suppl 2), 17232–17238 (2012)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuriy Slyvka
    • 1
    • 3
  • Yizhu Zhang
    • 1
  • Felicia V. Nowak
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical Sciences, HCOMOhio UniversityAthensUSA
  2. 2.Program in Molecular and Cell BiologyOhio UniversityAthensUSA
  3. 3.The Diabetes InstituteOhio UniversityAthensUSA

Personalised recommendations