, Volume 47, Issue 3, pp 699–716

Treatment of body composition changes in obese and overweight older adults: insight into the phenotype of sarcopenic obesity

  • Eleonora Poggiogalle
  • Silvia Migliaccio
  • Andrea Lenzi
  • Lorenzo Maria Donini


In recent years, mounting interest has been directed to sarcopenic obesity (SO), given the parallel increase of life expectancy and prevalence of obesity in Western countries. The phenotype of SO is characterized by the coexistence of excess fat mass and decreased muscle mass, leading to the impairment of physical performance. The aim of the present review was to summarize the impact of different treatment strategies contrasting body composition changes in older obese and overweight subjects, providing insight into the SO phenotype. Revision questions were formulated; relevant articles were identified from Pubmed through a systematic search strategy: definition of the search terms (sarcopenic obesity, diet, nutritional supplements, physical activity, exercise, pharmacological treatment); limits: papers published in the last 10 years; humans; age ≥ 60 years old; body mass index >25 kg/m2; language: English. Studies dealing with sarcopenia associated to cancer cachexia or neurological diseases, any malignant disease, inflammatory or autoimmune diseases, corticosteroids for systemic use, bedridden subjects, and syndromic obesity were excluded. 14 articles were identified for inclusion in the present systematic review, and were grouped basing on the type of the main intervention: data assessing body composition changes after combined lifestyle interventions, exercise/physical activity, dietary interventions, and pharmacological treatment. Most of the studies were randomized, controlled. Sample size ranged from 12 to 439 subjects, and study duration varied from 6 weeks to 12 months. Weight loss based on diet combined with exercise seems to be the best strategy to adopt for treatment of phenotypic aspects of SO, improving metabolic consequences related to excess fat, preserving lean mass, and allowing functional recovery.


Body composition Sarcopenic obesity Nutrition Exercise Physical activity Pharmacological treatment 


  1. 1.
    E.M. Mathus-Vliegen, Obesity and the elderly. J. Clin Gastroenterol. 46, 533–544 (2012)PubMedCrossRefGoogle Scholar
  2. 2.
    D.L. Waters, R.N. Baumgartner, Sarcopenia and obesity. Clin. Geriatr. Med. 27, 401–421 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    S. Stenholm, T.B. Harris, T. Rantanen, M. Visser, S.B. Kritchevsky, L. Ferrucci, Sarcopenic obesity: definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care. 11, 693–700 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    M. Zamboni, G. Mazzali, F. Fantin, A. Rossi, V. Di Francesco, Sarcopenic obesity: a new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 18, 388–395 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    Y.W. Hsu, B.R. Belcher, E.E. Ventura, C.E. Byrd-Williams, M.J. Weigensberg, J.N. Davis, A.D. McClain, M.I. Goran, D. Spruijt-Metz, Physical activity, sedentary behavior, and the metabolic syndrome in minority youth. Med. Sci. Sports Exerc. 43, 2307–2313 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    J.E. Fulton, S. Dai, L.M. Steffen, J.A. Grunbaum, S.M. Shah, D.R. Labarthe, Physical activity, energy intake, sedentary behavior, and adiposity in youth. Am. J. Prev. Med. 37, S40–S49 (2009)PubMedCrossRefGoogle Scholar
  7. 7.
    G.C. Bogdanis, Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 3, 142 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    G. Kewalramani, P.J. Bilan, A. Klip, Muscle insulin resistance: assault by lipids, cytokines and local macrophages. Curr. Opin. Clin. Nutr. Metab. Care. 13, 382–390 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    J.S. Lee, M. Visser, F.A. Tylavsky, S.B. Kritchevsky, A.V. Schwartz, N. Sahyoun, T.B. Harris, A.B. Newman, Health ABC study: Weight loss and regain and effects on body composition: the health, aging, and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 65, 78–83 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    N.M. Byrne, R.L. Weinsier, G.R. Hunter, R. Desmond, M.A. Patterson, B.E. Darnell, P.A. Zuckerman, Influence of distribution of lean body mass on resting metabolic rate afterweight loss and weight regain: comparison of responses in white and black women. Am. J. Clin. Nutr. 77, 1368–1373 (2003)PubMedGoogle Scholar
  11. 11.
    A. Bosy-Westphal, B. Schautz, M. Lagerpusch, M. Pourhassan, W. Braun, K. Goele, M. Heller, C.C. Glüer, M.J. Müller, Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int. J. Obes. (Lond.) 37, 1371–1377 (2013)CrossRefGoogle Scholar
  12. 12.
    R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, Sarcopenia: an undiagnosed condition in older adults. Current consensusdefinition: prevalence, etiology, and consequences. International working group onsarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, European Working Group on Sarcopenia in Older People: Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 39, 412–423 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    L.M. Donini, E. Poggiogalle, V. Mosca, A. Pinto, A. Brunani, P. Capodaglio, Disability affects the 6-minute walking distance in obese subjects (BMI > 40 kg/m2). PLoS One 8, e75491 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    L.M. Donini, A. Brunani, A. Sirtori, C. Savina, S. Tempera, M. Cuzzolaro, G. Spera, V. Cimolin, H. Precilios, A. Raggi, P. Capodaglio, SIO-ISDCA Task Force, Assessing disability in morbidly obese individuals: the Italian Society of Obesity test for obesity-related disabilities. Disabil. Rehabil. 33, 2509–2518 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    M.E. Levine, E.M. Crimmins, The impact of insulin resistance and inflammation on the association betweensarcopenic obesity and physical functioning. Obesity (Silver Spring) 20, 2101–2106 (2012)CrossRefGoogle Scholar
  17. 17.
    R.N. Baumgartner, S.J. Wayne, D.L. Waters, I. Janssen, D. Gallagher, J.E. Morley, Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 12, 1995–2004 (2004)PubMedCrossRefGoogle Scholar
  18. 18.
    S. Stenholm, T.B. Harris, T. Rantanen, M. Visser, S.B. Kritchevsky, L. Ferrucci, Sarcopenic obesity: definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care. 11, 693–700 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    C.M. Prado, J.C. Wells, S.R. Smith, B.C. Stephan, M. Siervo, Sarcopenic obesity: a critical appraisal of the current evidence. Clin. Nutr. 31, 583–601 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    M. Egger, G.D. Smith, D.G. Altman (eds.), Systematic reviews in health care: meta-analysis in context, 2nd edn. (BMJ, London, 2001)Google Scholar
  21. 21.
    C.J. Caspersen, K.E. Powell, G.M. Christenson, Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100, 126–131 (1985)PubMedCentralPubMedGoogle Scholar
  22. 22.
    N.P. Hays, R.D. Starling, X. Liu, D.H. Sullivan, T.A. Trappe, J.D. Fluckey, W.J. Evans, Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trial. Arch. Intern. Med. 164, 210–217 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    D.T. Villareal, M. Banks, D.R. Sinacore, C. Siener, S. Klein, Effect of weight loss and exercise on frailty in obese older adults. Arch. Intern. Med. 166, 860–866 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    T.N. Frimel, D.R. Sinacore, D.T. Villareal, Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med. Sci. Sports Exerc. 40, 1213–1219 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    P. Chomentowski, J.J. Dubé, F. Amati, M. Stefanovic-Racic, S. Zhu, F.G. Toledo, B.H. Goodpaster, Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J. Gerontol. A Biol. Sci. Med. Sci. 64, 575–580 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    V. Messier, R. Rabasa-Lhoret, E. Doucet, M. Brochu, J.M. Lavoie, A. Karelis, D. Prud’homme, I. Strychar, Effects of the addition of a resistance training programme to a caloric restriction weight loss intervention on psychosocial factors in overweight and obese post-menopausal women: a Montreal Ottawa New Emerging Team study. J. Sports. Sci. 28, 83–92 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    D.T. Villareal, S. Chode, N. Parimi, D.R. Sinacore, T. Hilton, R. Armamento-Villareal, N. Napoli, C. Qualls, K. Shah, Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 364, 1218–1229 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    K.E. Foster-Schubert, C.M. Alfano, C.R. Duggan, L. Xiao, K.L. Campbell, A. Kong, C.E. Bain, C.Y. Wang, G.L. Blackburn, A. McTiernan, Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring) 20, 1628–1638 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Mason, L. Xiao, I. Imayama, C.R. Duggan, K.E. Foster-Schubert, A. Kong, K.L. Campbell, C.Y. Wang, A. Villasenor, M.L. Neuhouser, C.M. Alfano, G.L. Blackburn, A. McTiernan, Influence of diet, exercise, and serum vitamin d on sarcopenia in postmenopausal women. Med. Sci. Sports. Exerc. 45, 607–614 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    L.D. Hayes, F.M. Grace, N. Sculthorpe, P. Herbert, J.W. Ratcliffe, L.P. Kilduff, J.S. Baker, The effects of a formal exercise training programme on salivary hormone concentrations and body composition in previously sedentary aging men. Springerplus 2, 18 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    M. Aubertin-Leheudre, C. Lord, A. Khalil, I.J. Dionne, Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur. J. Clin. Nutr. 61, 1442–1444 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Choquette, É. Riesco, É. Cormier, T. Dion, M. Aubertin-Leheudre, I.J. Dionne, Effects of soya isoflavones and exercise on body composition and clinical risk factors of cardiovascular diseases in overweight postmenopausal women: a 6-month double-blind controlled trial. Br. J. Nutr. 105, 1199–1209 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    R.H. Coker, S. Miller, S. Schutzler, N. Deutz, R.R. Wolfe, Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr. J. 11, 105 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    M.K. Shea, B.J. Nicklas, A.P. Marsh, D.K. Houston, G.D. Miller, S. Isom, M.E. Miller, J.J. Carr, M.F. Lyles, T.B. Harris, S.B. Kritchevsky, The effect of pioglitazone and resistance training on body composition in older men and women undergoing hypocaloric weight loss. Obesity (Silver Spring) 19, 1636–1646 (2011)CrossRefGoogle Scholar
  35. 35.
    M.B. Sørensen, A.M. Rosenfalck, L. Højgaard, B. Ottesen, Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes. Res. 9, 622–626 (2001)PubMedCrossRefGoogle Scholar
  36. 36.
    H. Liebermeister, Effects of weight-reduction on obesity-associated diseases. Ger. Med. Sci. 1 (2003)Google Scholar
  37. 37.
    D.L. Ballor, V.L. Katch, M.D. Becque, C.R. Marks, Resistance weight training during caloric restriction enhances lean body weight maintenance. Am. J. Clin. Nutr. 47, 19–25 (1988)PubMedGoogle Scholar
  38. 38.
    S.L. Miller, R.R. Wolfe, The danger of weight loss in the elderly. J. Nutr. Health Aging. 12, 487–491 (2008)PubMedCrossRefGoogle Scholar
  39. 39.
    P. Darmon, Intentional weight loss in older adults: useful or wasting disease generating strategy? Curr. Opin. Clin. Nutr. Metab. Care. 16, 284–289 (2013)PubMedCrossRefGoogle Scholar
  40. 40.
    J.S. Garrow, C.D. Summerbell, Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur. J. Clin. Nutr. 49, 1–10 (1995)PubMedGoogle Scholar
  41. 41.
    G.R. Hunter, N.M. Byrne, B. Sirikul, J.R. Fernández, P.A. Zuckerman, B.E. Darnell, B.A. Gower, Resistance training conserves fat-free mass and resting energy expenditure following weight loss. Obesity (Silver Spring) 16, 1045–1051 (2008)CrossRefGoogle Scholar
  42. 42.
    K. Michalakis, D.G. Goulis, A. Vazaiou, G. Mintziori, A. Polymeris, A. Abrahamian-Michalakis, Obesity in the ageing man. Metabolism 62, 1341–1349 (2013)PubMedCrossRefGoogle Scholar
  43. 43.
    J.L. Frestedt, J.L. Zenk, M.A. Kuskowski, L.S. Ward, E.D. Bastian, A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr. Metab. (Lond.) 5, 8 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Murphy, B.F. Miller, Protein consumption following aerobic exercise increases whole-body protein turnover in older adults. Appl. Physiol. Nutr. Metab. 35, 583–590 (2010)PubMedCrossRefGoogle Scholar
  45. 45.
    T.A. Churchward-Venne, N.A. Burd, C.J. Mitchell, D.W. West, A. Philp, G.R. Marcotte, S.K. Baker, K. Baar, S.M. Phillips, Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J. Physiol. 590, 2751–2765 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    N.A. Burd, Y. Yang, D.R. Moore, J.E. Tang, M.A. Tarnopolsky, S.M. Phillips, Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br. J Nutr. 108, 958–962 (2012)PubMedCrossRefGoogle Scholar
  47. 47.
    WHO Technical Report Series 935. Protein and Amino Acid Requirements in Human Nutrition: report of a joint FAO/WHO/UNU expert consultation. Report of a Joint WHO/FAO/UNU Expert Consultation. 2011Google Scholar
  48. 48.
    V. Messier, R. Rabasa-Lhoret, S. Barbat-Artigas, B. Elisha, A.D. Karelis, M. Aubertin-Leheudre, Menopause and sarcopenia: a potential role for sex hormones. Maturitas 68, 331–336 (2011)PubMedCrossRefGoogle Scholar
  49. 49.
    L.E. Moeller, C.T. Peterson, K.B. Hanson, S.B. Dent, D.S. Lewis, D.S. King, D.L. Alekel, Isoflavone-rich soy protein prevents loss of hip lean mass but does not prevent the shift in regional fat distribution in perimenopausal women. Menopause 10, 322–331 (2003)PubMedCrossRefGoogle Scholar
  50. 50.
    J. Wu, J. Oka, I. Tabata, M. Higuchi, T. Toda, N. Fuku, J. Ezaki, F. Sugiyama, S. Uchiyama, K. Yamada, Y. Ishimi, Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J. Bone Miner. Res. 21, 780–789 (2006)PubMedCrossRefGoogle Scholar
  51. 51.
    M. Velders, P. Diel, How sex hormones promote skeletal muscle regeneration. Sports Med. 43, 1089–1100 (2013)PubMedCrossRefGoogle Scholar
  52. 52.
    P. Shokouh, A. Joharimoghadam, H. Roohafza, M. Sadeghi, A. Golabchi, M. Boshtam, N. Sarrafzadegan, Effects of Pioglitazone on asymmetric dimethylarginine and components of the metabolic syndrome in nondiabetic patients (EPICAMP study): a double-blind, randomized clinical trial. PPAR Res. 2013, 358074 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    A.K. Gupta, S.R. Smith, F.L. Greenway, G.A. Bray, Pioglitazone treatment in type 2 diabetes mellitus when combined with portion control diet modifies themetabolic syndrome. Diabetes Obes. Metab. 11, 330–337 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    A. Romero-Corral, V.K. Somers, J. Sierra-Johnson, R.J. Thomas, M.L. Collazo-Clavell, J. Korinek, T.G. Allison, J.A. Batsis, F.H. Sert-Kuniyoshi, F. Lopez-Jimenez, Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes (Lond). 32, 959–966 (2008)PubMedCentralCrossRefGoogle Scholar
  55. 55.
    S. Kohara, Sarcopenic obesity in aging population: current status and future directions for research. Endocrine 45, 15–25 (2014)PubMedCrossRefGoogle Scholar
  56. 56.
    D.T. Villareal, M. Banks, C. Siener, D.R. Sinacore, S. Klein, Physical frailty and body composition in obese elderly men and women. Obes. Res. 12, 913–920 (2004)PubMedCrossRefGoogle Scholar
  57. 57.
    K.S. de Souza Vasconcelos, J.M. Dias, M.C. de Araújo, A.C. Pinheiro, M.M. Maia, R.C. Dias, Land-based versus aquatic resistance therapeutic exercises for older women with sarcopenic obesity: study protocol for a randomised controlled trial. Trials 14, 296 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    I. Janssen, S.B. Heymsfield, R. Ross, Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 889–896 (2002)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eleonora Poggiogalle
    • 1
  • Silvia Migliaccio
    • 1
    • 2
  • Andrea Lenzi
    • 1
  • Lorenzo Maria Donini
    • 1
  1. 1.Department of Experimental Medicine, Pathophysiology, Food Science and Endocrinology Section, Food Science and Human Nutrition Research Unit, “CASCO” High Specialization Center for Obesity CareSapienza University of RomeRomeItaly
  2. 2.Department of Movement Human and Health Sciences“Foro Italico” University of RomeRomeItaly

Personalised recommendations