Endocrine

, Volume 47, Issue 3, pp 668–678 | Cite as

Gastrointestinal hormones and polycystic ovary syndrome

Review

Abstract

Polycystic ovary syndrome (PCOS) is an endocrine disease of women in reproductive age. It is characterized by anovulation and hyperandrogenism. Most often patients with PCOS have metabolic abnormalities such as dyslipidemia, insulin resistance, and glucose intolerance. It is not surprising that obesity is high prevalent in PCOS. Over 60 % of PCOS women are obese or overweight. Modulation of appetite and energy intake is essential to maintain energy balance and body weight. The gastrointestinal tract, where nutrients are digested and absorbed, plays a central role in energy homeostasis. The signals from the gastrointestinal tract arise from the stomach (ghrelin release), proximal small intestine (CCK release), and distal small intestine (GLP-1 and PYY) in response to food. These hormones are recognized as “appetite regulatory hormones.” Weight loss is the key in the treatments of obese/overweight patients with PCOS. However, current non-pharmacologic management of body weight is hard to achieve. This review highlighted the gastrointestinal hormones, and discussed the potential strategies aimed at modifying hormones for treatment in PCOS.

Keywords

Gastrointestinal hormones Obesity PCOS 

Notes

Acknowledgments

This work was supported by grant from the Shanghai Jiaotong University, School of Medicine, Science and Technology Fund (Grant No. 12XJ10015).

Disclosure

There are no conflicts of interest to disclose.

References

  1. 1.
    E.S. Knochenhauer, T.J. Key, M. Kahsar-Miller, W. Waggoner, L.R. Boots, R. Azziz, Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J. Clin. Endocrinol. Metab. 83, 3078–3082 (1998)PubMedGoogle Scholar
  2. 2.
    E. Diamanti-Kandarakis, C.R. Kouli, A.T. Bergiele, F.A. Filandra, T.C. Tsianateli, G.G. Spina, E.D. Zapanti, M.I. Bartzis, A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84, 4006–4011 (1999)PubMedGoogle Scholar
  3. 3.
    W.A. March, V.M. Moore, K.J. Willson, D.I. Phillips, R.J. Norman, M.J. Davies, The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 25, 544–551 (2010)PubMedGoogle Scholar
  4. 4.
    H. Jia, L. Yu, X. Guo, W. Gao, Z. Jiang, Associations of adiponectin gene polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocrine 42, 299–306 (2012)PubMedGoogle Scholar
  5. 5.
    M. Brower, K. Brennan, M. Pall, R. Azziz, The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98, E1967–E1971 (2013)PubMedGoogle Scholar
  6. 6.
    S.F. Witchel, S.E. Recabarren, F. Gonzalez, E. Diamanti-Kandarakis, K.I. Cheang, A.J. Duleba, R.S. Legro, R. Homburg, R. Pasquali, R.A. Lobo, C.C. Zouboulis, F. Kelestimur, F. Fruzzetti, W. Futterweit, R.J. Norman, D.H. Abbott, Emerging concepts about prenatal genesis, aberrant metabolism and treatment paradigms in polycystic ovary syndrome. Endocrine 42, 526–534 (2012)PubMedCentralPubMedGoogle Scholar
  7. 7.
    S.S. Lim, R.J. Norman, M.J. Davies, L.J. Moran, The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 14, 95–109 (2013)PubMedGoogle Scholar
  8. 8.
    N. Kanaya, S. Vonderfecht, S. Chen, Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice. J.Steroid Biochem. Mol. Biol. 138, 100–106 (2013)PubMedCentralPubMedGoogle Scholar
  9. 9.
    A.L. Hirschberg, S. Naessen, M. Stridsberg, B. Bystrom, J. Holtet, Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol. Endocrinol. 19, 79–87 (2004)PubMedGoogle Scholar
  10. 10.
    D. Mahoney, Lifestyle modification intervention among infertile overweight and obese women with polycystic ovary syndrome. J. Am. Assoc. Nurse Pract. (2013). doi: 10.1002/2327-6924.12073 PubMedGoogle Scholar
  11. 11.
    B.A. Gower, P.C. Chandler-Laney, F. Ovalle, L.L. Goree, R. Azziz, R.A. Desmond, W.M. Granger, A.M. Goss, G.W. Bates, Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin. Endocrinol. 79, 550–557 (2013)Google Scholar
  12. 12.
    P.J. Havel, Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp. Biol. Med. (Maywood) 226, 963–977 (2001)Google Scholar
  13. 13.
    R. Deniz, B. Gurates, S. Aydin, H. Celik, I. Sahin, Y. Baykus, Z. Catak, A. Aksoy, C. Citil, S. Gungor, Nesfatin-1 and other hormone alterations in polycystic ovary syndrome. Endocrine 42, 694–699 (2012)PubMedGoogle Scholar
  14. 14.
    S. Aydin, Multi-functional peptide hormone NUCB2/nesfatin-1. Endocrine 44, 312–325 (2013)PubMedGoogle Scholar
  15. 15.
    M. Tschop, D.L. Smiley, M.L. Heiman, Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000)PubMedGoogle Scholar
  16. 16.
    G. Gomez, E.W. Englander, G.H. Greeley Jr, Nutrient inhibition of ghrelin secretion in the fasted rat. Regul. Pept. 117, 33–36 (2004)PubMedGoogle Scholar
  17. 17.
    J. Overduin, R.S. Frayo, H.J. Grill, J.M. Kaplan, D.E. Cummings, Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology 146, 845–850 (2005)PubMedGoogle Scholar
  18. 18.
    B.A. Parker, S. Doran, J. Wishart, M. Horowitz, I.M. Chapman, Effects of small intestinal and gastric glucose administration on the suppression of plasma ghrelin concentrations in healthy older men and women. Clin. Endocrinol. 62, 539–546 (2005)Google Scholar
  19. 19.
    W.A. Blom, A. Stafleu, C. de Graaf, F.J. Kok, G. Schaafsma, H.F. Hendriks, Ghrelin response to carbohydrate-enriched breakfast is related to insulin. Am. J. Clin. Nutr. 81, 367–375 (2005)PubMedGoogle Scholar
  20. 20.
    Y. Greenman, N. Golani, S. Gilad, M. Yaron, R. Limor, N. Stern, Ghrelin secretion is modulated in a nutrient- and gender-specific manner. Clin. Endocrinol. 60, 382–388 (2004)Google Scholar
  21. 21.
    A.M. Wren, L.J. Seal, M.A. Cohen, A.E. Brynes, G.S. Frost, K.G. Murphy, W.S. Dhillo, M.A. Ghatei, S.R. Bloom, Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001)PubMedGoogle Scholar
  22. 22.
    D.E. Cummings, K. Clement, J.Q. Purnell, C. Vaisse, K.E. Foster, R.S. Frayo, M.W. Schwartz, A. Basdevant, D.S. Weigle, Elevated plasma ghrelin levels in Prader Willi syndrome. Nat. Med. 8, 643–644 (2002)PubMedGoogle Scholar
  23. 23.
    D.E. Cummings, D.S. Weigle, R.S. Frayo, P.A. Breen, M.K. Ma, E.P. Dellinger, J.Q. Purnell, Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002)PubMedGoogle Scholar
  24. 24.
    P.J. Currie, A. Mirza, R. Fuld, D. Park, J.R. Vasselli, Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R353–R358 (2005)PubMedGoogle Scholar
  25. 25.
    M. Nakazato, N. Murakami, Y. Date, M. Kojima, H. Matsuo, K. Kangawa, S. Matsukura, A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001)PubMedGoogle Scholar
  26. 26.
    M.A. Cowley, J.L. Smart, M. Rubinstein, M.G. Cerdan, S. Diano, T.L. Horvath, R.D. Cone, M.J. Low, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)PubMedGoogle Scholar
  27. 27.
    D.E. Cummings, K.E. Foster, Ghrelin-leptin tango in body-weight regulation. Gastroenterology 124, 1532–1535 (2003)PubMedGoogle Scholar
  28. 28.
    A. Moulin, L. Brunel, D. Boeglin, L. Demange, J. Ryan, C. M’Kadmi, S. Denoyelle, J. Martinez, J.A. Fehrentz, The 1,2,4-triazole as a scaffold for the design of ghrelin receptor ligands: development of JMV 2959, a potent antagonist. Amino Acids 44, 301–314 (2013)PubMedGoogle Scholar
  29. 29.
    G. Arusoglu, G. Koksal, N. Cinar, S. Tapan, D.Y. Aksoy, B.O. Yildiz, Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive. J. Clin. Endocrinol. Metab. 98, 4475–4482 (2013)PubMedGoogle Scholar
  30. 30.
    Japur, CC, Diez-Garcia, RW, de Oliveira Penaforte, FR, de Sa, MF, Imbalance between postprandial ghrelin and insulin responses to an ad libitum meal in obese women with polycystic ovary syndrome. Reprod. Sci. (2014) [Epub ahead of print]Google Scholar
  31. 31.
    I.T. Ozgen, M. Aydin, A. Guven, Y. Aliyazicioglu, Characteristics of polycystic ovarian syndrome and relationship with ghrelin in adolescents. J. Pediatr. Adolesc. Gynecol. 23, 285–289 (2010)PubMedGoogle Scholar
  32. 32.
    T.M. Barber, F.F. Casanueva, F. Karpe, M. Lage, S. Franks, M.I. McCarthy, J.A. Wass, Ghrelin levels are suppressed and show a blunted response to oral glucose in women with polycystic ovary syndrome. Eur. J. Endocrinol 158, 511–516 (2008)PubMedGoogle Scholar
  33. 33.
    M. Mitkov, B. Pehlivanov, Orbetzova, M:Serum ghrelin level in women with polycystic ovary syndrome and its relationship with endocrine and metabolic parameters. Gynecol. Endocrinol. 24, 625–630 (2008)PubMedGoogle Scholar
  34. 34.
    A. Bideci, M.O. Camurdan, E. Yesilkaya, F. Demirel, P. Cinaz, Serum ghrelin, leptin and resistin levels in adolescent girls with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 34, 578–584 (2008)PubMedGoogle Scholar
  35. 35.
    M.J. Theodorakis, O. Carlson, S. Michopoulos, M.E. Doyle, M. Juhaszova, K. Petraki, J.M. Egan, Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am. J. Physiol. Endocrinol. Metab. 290, E550–E559 (2006)PubMedGoogle Scholar
  36. 36.
    C.F. Deacon, What do we know about the secretion and degradation of incretin hormones? Regul. Pept. 128, 117–124 (2005)PubMedGoogle Scholar
  37. 37.
    R. Mentlein, B. Gallwitz, W.E. Schmidt, Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993)PubMedGoogle Scholar
  38. 38.
    R. Mentlein, Dipeptidyl-peptidase IV (CD26)–role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24 (1999)PubMedGoogle Scholar
  39. 39.
    L. Hansen, C.F. Deacon, C. Orskov, J.J. Holst, Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140, 5356–5363 (1999)PubMedGoogle Scholar
  40. 40.
    L.A. Scrocchi, T.J. Brown, N. MaClusky, P.L. Brubaker, A.B. Auerbach, A.L. Joyner, D.J. Drucker, Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996)PubMedGoogle Scholar
  41. 41.
    R. Perfetti, J. Zhou, M.E. Doyle, J.M. Egan, Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141, 4600–4605 (2000)PubMedGoogle Scholar
  42. 42.
    J. Schirra, M. Nicolaus, R. Roggel, M. Katschinski, M. Storr, H.J. Woerle, B. Goke, Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55, 243–251 (2006)PubMedCentralPubMedGoogle Scholar
  43. 43.
    J.J. Meier, B. Gallwitz, S. Salmen, O. Goetze, J.J. Holst, W.E. Schmidt, M.A. Nauck, Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 88, 2719–2725 (2003)PubMedGoogle Scholar
  44. 44.
    M.A. Nauck, U. Niedereichholz, R. Ettler, J.J. Holst, C. Orskov, R. Ritzel, W.H. Schmiegel, Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273, E981–E988 (1997)PubMedGoogle Scholar
  45. 45.
    J.J. Hwa, L. Ghibaudi, P. Williams, M.B. Witten, R. Tedesco, C.D. Strader, Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides 19, 869–875 (1998)PubMedGoogle Scholar
  46. 46.
    F. Rodriquez de Fonseca, M. Navarro, E. Alvarez, I. Roncero, J.A. Chowen, O. Maestre, R. Gomez, R.M. Munoz, J. Eng, E. Blazquez, Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 49, 709–717 (2000)PubMedGoogle Scholar
  47. 47.
    J.J. Meier, M.A. Nauck, Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab. Res. Rev. 21, 91–117 (2005)PubMedGoogle Scholar
  48. 48.
    E. Naslund, M. Gutniak, S. Skogar, S. Rossner, P.M. Hellstrom, Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am. J. Clin. Nutr. 68, 525–530 (1998)PubMedGoogle Scholar
  49. 49.
    M.A. Nauck, J.J. Meier, Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regul. Pept. 128, 135–148 (2005)PubMedGoogle Scholar
  50. 50.
    M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)PubMedGoogle Scholar
  51. 51.
    J. Ma, A.N. Pilichiewicz, C. Feinle-Bisset, J.M. Wishart, K.L. Jones, M. Horowitz, C.K. Rayner, Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes. Diabet. Med. 29, 604–608 (2012)PubMedGoogle Scholar
  52. 52.
    L.R. Ranganath, J.M. Beety, L.M. Morgan, J.W. Wright, R. Howland, V. Marks, Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38, 916–919 (1996)PubMedCentralPubMedGoogle Scholar
  53. 53.
    S. Madsbad, The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications. Diabet. Obes. Metab. 16, 9–21 (2014)Google Scholar
  54. 54.
    F.K. Knop, K. Aaboe, T. Vilsboll, A. Volund, J.J. Holst, T. Krarup, S. Madsbad, Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabet. Obes. Metab. 14, 500–510 (2012)Google Scholar
  55. 55.
    T. Vilsboll, T. Krarup, J. Sonne, S. Madsbad, A. Volund, A.G. Juul, J.J. Holst, Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 88, 2706–2713 (2003)PubMedGoogle Scholar
  56. 56.
    C. Verdich, S. Toubro, B. Buemann, L. Madsen, J. Juul, J. Holst, A. Astrup, The role of postprandial releases of insulin and incretin hormones in meal-induced satiety–effect of obesity and weight reduction. Int. J. Obes. Relat. Metab. Disord. 25, 1206–1214 (2001)PubMedGoogle Scholar
  57. 57.
    Y. Anini, P.L. Brubaker, Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 52, 252–259 (2003)PubMedGoogle Scholar
  58. 58.
    J.G. Barrera, D.A. Sandoval, D.A. D’Alessio, R.J. Seeley, GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat. Rev. Endocrinol. 7, 507–516 (2011)PubMedCentralPubMedGoogle Scholar
  59. 59.
    R. Gama, F. Norris, J. Wright, L. Morgan, S. Hampton, S. Watkins, V. Marks, The entero-insular axis in polycystic ovarian syndrome. Ann. Clin. Biochem. 33(Pt 3), 190–195 (1996)PubMedGoogle Scholar
  60. 60.
    C. Pontikis, M.P. Yavropoulou, K.A. Toulis, K. Kotsa, K. Kazakos, A. Papazisi, A. Gotzamani-Psarakou, J.G. Yovos, The incretin effect and secretion in obese and lean women with polycystic ovary syndrome: a pilot study. J. Women’s Health 20, 971–976 (2011)Google Scholar
  61. 61.
    J. Vrbikova, M. Hill, B. Bendlova, T. Grimmichova, K. Dvorakova, K. Vondra, G. Pacini, Incretin levels in polycystic ovary syndrome. Eur. J. Endocrinol. 159, 121–127 (2008)PubMedGoogle Scholar
  62. 62.
    J.F. Rehfeld, G. Sun, T. Christensen, J.G. Hillingso, The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33. J. Clin. Endocrinol. Metab. 86, 251–258 (2001)PubMedGoogle Scholar
  63. 63.
    R.A. Liddle, I.D. Goldfine, M.S. Rosen, R.A. Taplitz, J.A. Williams, Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75, 1144–1152 (1985)PubMedCentralPubMedGoogle Scholar
  64. 64.
    T.H. Moran, K.P. Kinzig, Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188 (2004)PubMedGoogle Scholar
  65. 65.
    R.A. Liddle, Regulation of cholecystokinin secretion in humans. J. Gastroenterol. 35, 181–187 (2000)PubMedGoogle Scholar
  66. 66.
    C. Feinle, M. D’Amato, N.W. Read, Cholecystokinin-A receptors modulate gastric sensory and motor responses to gastric distension and duodenal lipid. Gastroenterology 110, 1379–1385 (1996)PubMedGoogle Scholar
  67. 67.
    W. Schwizer, J. Borovicka, P. Kunz, R. Fraser, C. Kreiss, M. D’Amato, G. Crelier, P. Boesiger, M. Fried, Role of cholecystokinin in the regulation of liquid gastric emptying and gastric motility in humans: studies with the CCK antagonist loxiglumide. Gut 41, 500–504 (1997)PubMedCentralPubMedGoogle Scholar
  68. 68.
    C.K. Rayner, H.S. Park, S.M. Doran, I.M. Chapman, M. Horowitz, Effects of cholecystokinin on appetite and pyloric motility during physiological hyperglycemia. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G98–G104 (2000)PubMedGoogle Scholar
  69. 69.
    J. Glatzle, Y. Wang, D.W. Adelson, T.J. Kalogeris, T.T. Zittel, P. Tso, J.Y. Wei, H.E. Raybould, Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. J. Physiol. 550, 657–664 (2003)PubMedCentralPubMedGoogle Scholar
  70. 70.
    J.G. Gutierrez, W.Y. Chey, V.P. Dinoso, Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67, 35–41 (1974)PubMedGoogle Scholar
  71. 71.
    J. Gibbs, R.C. Young, G.P. Smith, Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323–325 (1973)PubMedGoogle Scholar
  72. 72.
    T.H. Moran, P.J. Ameglio, G.J. Schwartz, P.R. McHugh, Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK. Am. J. Physiol. 262, R46–R50 (1992)PubMedGoogle Scholar
  73. 73.
    T.H. Moran, S. Bi, Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1211–1218 (2006)PubMedCentralPubMedGoogle Scholar
  74. 74.
    K. Meereis-Schwanke, H. Klonowski-Stumpe, L. Herberg, C. Niederau, Long-term effects of CCK-agonist and -antagonist on food intake and body weight in Zucker lean and obese rats. Peptides 19, 291–299 (1998)PubMedGoogle Scholar
  75. 75.
    L. Wang, M.D. Barachina, V. Martinez, J.Y. Wei, Y. Tache, Synergistic interaction between CCK and leptin to regulate food intake. Regul. Pept. 92, 79–85 (2000)PubMedGoogle Scholar
  76. 76.
    I.M. Brennan, T.J. Little, K.L. Feltrin, A.J. Smout, J.M. Wishart, M. Horowitz, C. Feinle-Bisset, Dose-dependent effects of cholecystokinin-8 on antropyloroduodenal motility, gastrointestinal hormones, appetite, and energy intake in healthy men. Am. J. Physiol. Endocrinol. Metab. 295, E1487–E1494 (2008)PubMedGoogle Scholar
  77. 77.
    C. Beglinger, L. Degen, D. Matzinger, M. D’Amato, J. Drewe, Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1149–R1154 (2001)PubMedGoogle Scholar
  78. 78.
    F.P. O’Harte, M.H. Mooney, C.M. Kelly, P.R. Flatt, Glycated cholecystokinin-8 has an enhanced satiating activity and is protected against enzymatic degradation. Diabetes 47, 1619–1624 (1998)PubMedGoogle Scholar
  79. 79.
    I.A. Montgomery, N. Irwin, P.R. Flatt, Beneficial effects of (pGlu-Gln)-CCK-8 on energy intake and metabolism in high fat fed mice are associated with alterations of hypothalamic gene expression. Hormon. Metab. Res. 45(6), 471–473 (2013)Google Scholar
  80. 80.
    N. Irwin, I.A. Montgomery, R.C. Moffett, P.R. Flatt, Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochem. Pharmacol. 85, 81–91 (2013)PubMedGoogle Scholar
  81. 81.
    N. Irwin, P.R. Flatt, Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Curr. Opin. Pharmacol. 13, 989–995 (2013)PubMedGoogle Scholar
  82. 82.
    N. Irwin, P. Frizelle, F.P. O’Harte, P.R. Flatt, (pGlu-Gln)-CCK-8[mPEG]: a novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochim. et Biophys. Acta 1830, 4009–4016 (2013)Google Scholar
  83. 83.
    B. Bidzinska-Speichert, A. Lenarcik, U. Tworowska-Bardzinska, R. Slezak, G. Bednarek-Tupikowska, A. Milewicz, Pro12Ala PPAR gamma2 gene polymorphism in PCOS women: the role of compounds regulating satiety. Gynecol. Endocrinol. 28, 195–198 (2012)PubMedGoogle Scholar
  84. 84.
    J. Wen, S.F. Phillips, M.G. Sarr, L.J. Kost, Holst, JJ:PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon. Am. J. Physiol. 269, G945–G952 (1995)PubMedGoogle Scholar
  85. 85.
    R.P. Vincent, C.W. le Roux, The satiety hormone peptide YY as a regulator of appetite. J. Clin. Pathol. 61, 548–552 (2008)PubMedGoogle Scholar
  86. 86.
    M.S. Huda, J.P. Wilding, J.H. Pinkney, Gut peptides and the regulation of appetite. Obes. Rev. 7, 163–182 (2006)PubMedGoogle Scholar
  87. 87.
    L. Degen, S. Oesch, M. Casanova, S. Graf, S. Ketterer, J. Drewe, C. Beglinger, Effect of peptide YY3-36 on food intake in humans. Gastroenterology 129, 1430–1436 (2005)PubMedGoogle Scholar
  88. 88.
    H.C. Lin, W.Y. Chey, X. Zhao, Release of distal gut peptide YY (PYY) by fat in proximal gut depends on CCK. Peptides 21, 1561–1563 (2000)PubMedGoogle Scholar
  89. 89.
    G.A. Eberlein, V.E. Eysselein, M. Schaeffer, P. Layer, D. Grandt, H. Goebell, W. Niebel, M. Davis, T.D. Lee, J.E. Shively et al., A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(1–36). Peptides 10, 797–803 (1989)PubMedGoogle Scholar
  90. 90.
    R.L. Conter, J.J. Roslyn, I.L. Taylor, Effects of peptide YY on gallbladder motility. Am. J. Physiol. 252, G736–G741 (1987)PubMedGoogle Scholar
  91. 91.
    N. Vrang, A.N. Madsen, M. Tang-Christensen, G. Hansen, P.J. Larsen, PYY(3–36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R367–R375 (2006)PubMedGoogle Scholar
  92. 92.
    T.H. Moran, U. Smedh, K.P. Kinzig, K.A. Scott, S. Knipp, E.E. Ladenheim, Peptide YY(3–36) inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R384–R388 (2005)PubMedGoogle Scholar
  93. 93.
    N.M. Neary, C.J. Small, M.R. Druce, A.J. Park, S.M. Ellis, N.M. Semjonous, C.L. Dakin, K. Filipsson, F. Wang, A.S. Kent, G.S. Frost, M.A. Ghatei, S.R. Bloom, Peptide YY3-36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005)PubMedGoogle Scholar
  94. 94.
    R.L. Batterham, M.A. Cowley, C.J. Small, H. Herzog, M.A. Cohen, C.L. Dakin, A.M. Wren, A.E. Brynes, M.J. Low, M.A. Ghatei, R.D. Cone, S.R. Bloom, Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418, 650–654 (2002)PubMedGoogle Scholar
  95. 95.
    R.L. Batterham, M.A. Cohen, S.M. Ellis, C.W. Le Roux, D.J. Withers, G.S. Frost, M.A. Ghatei, S.R. Bloom, Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349, 941–948 (2003)PubMedGoogle Scholar
  96. 96.
    C.R. Abbott, C.J. Small, A.R. Kennedy, N.M. Neary, A. Sajedi, M.A. Ghatei, S.R. Bloom, Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res. 1043, 139–144 (2005)PubMedGoogle Scholar
  97. 97.
    C.W. le Roux, R.L. Batterham, S.J. Aylwin, M. Patterson, C.M. Borg, K.J. Wynne, A. Kent, R.P. Vincent, J. Gardiner, M.A. Ghatei, S.R. Bloom, Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147, 3–8 (2006)PubMedGoogle Scholar
  98. 98.
    C.L. Roth, P.J. Enriori, K. Harz, J. Woelfle, M.A. Cowley, T. Reinehr, Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 90, 6386–6391 (2005)PubMedGoogle Scholar
  99. 99.
    E. Naslund, P. Gryback, P.M. Hellstrom, H. Jacobsson, J.J. Holst, E. Theodorsson, L. Backman, Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int. J. Obes. Relat. Metab. Disord. 21, 387–392 (1997)PubMedGoogle Scholar
  100. 100.
    S.L. Pedersen, P.G. Sasikumar, S. Chelur, B. Holst, A. Artmann, K.J. Jensen, N. Vrang, Peptide hormone isoforms: N-terminally branched PYY3–36 isoforms give improved lipid and fat-cell metabolism in diet-induced obese mice. J. Pept. Sci. 16, 664–673 (2010)PubMedGoogle Scholar
  101. 101.
    M.L. Addison, J.S. Minnion, J.C. Shillito, K. Suzuki, T.M. Tan, B.C. Field, N. Germain-Zito, C. Becker-Pauly, M.A. Ghatei, S.R. Bloom, K.G. Murphy, A role for metalloendopeptidases in the breakdown of the gut hormone, PYY 3–36. Endocrinology 152, 4630–4640 (2011)PubMedGoogle Scholar
  102. 102.
    T. Tsilchorozidou, R.L. Batterham, G.S. Conway, Metformin increases fasting plasma peptide tyrosine tyrosine (PYY) in women with polycystic ovarian syndrome (PCOS). Clin. Endocrinol. 69, 936–942 (2008)Google Scholar
  103. 103.
    K. Zwirska-Korczala, K. Sodowski, S.J. Konturek, D. Kuka, M. Kukla, T. Brzozowski, W. Cnota, E. Wozniak-Grygiel, J. Jaworek, R. Buldak, B. Rybus-Kalinowska, M. Fryczowski, Postprandial response of ghrelin and PYY and indices of low-grade chronic inflammation in lean young women with polycystic ovary syndrome. J. Physiol. Pharmacol. 59(Suppl 2), 161–178 (2008)PubMedGoogle Scholar
  104. 104.
    H. Lee, J.Y. Oh, Y.A. Sung, H. Chung, Is insulin resistance an intrinsic defect in asian polycystic ovary syndrome? Yonsei Med. J. 54, 609–614 (2013)PubMedCentralPubMedGoogle Scholar
  105. 105.
    D. Panidis, K. Tziomalos, E. Papadakis, C. Vosnakis, P. Chatzis, I. Katsikis, Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility. Endocrine 44, 583–590 (2013)PubMedGoogle Scholar
  106. 106.
    R.L. Thomson, J.D. Buckley, M. Noakes, P.M. Clifton, R.J. Norman, G.D. Brinkworth, The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 3373–3380 (2008)PubMedGoogle Scholar
  107. 107.
    K.A. Marsh, K.S. Steinbeck, F.S. Atkinson, P. Petocz, J.C. Brand-Miller, Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. Erican J. Clin. Nutr. 92, 83–92 (2010)Google Scholar
  108. 108.
    F. Esfahanian, M.M. Zamani, R. Heshmat, F. Moini nia, Effect of metformin compared with hypocaloric diet on serum C-reactive protein level and insulin resistance in obese and overweight women with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 39, 806–813 (2013)PubMedGoogle Scholar
  109. 109.
    S.E. Kasim-Karakas, W.M. Cunningham, A. Tsodikov, Relation of nutrients and hormones in polycystic ovary syndrome. Am. J. Clin. Nutr. 85, 688–694 (2007)PubMedGoogle Scholar
  110. 110.
    A. Karamanlis, R. Chaikomin, S. Doran, M. Bellon, F.D. Bartholomeusz, J.M. Wishart, K.L. Jones, M. Horowitz, C.K. Rayner, Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am. J. Clin. Nutr. 86, 1364–1368 (2007)PubMedGoogle Scholar
  111. 111.
    N. Phelan, A. O’Connor, T. Kyaw Tun, N. Correia, G. Boran, H.M. Roche, J. Gibney, Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 93, 652–662 (2011)PubMedGoogle Scholar
  112. 112.
    Y.H. Zheng, X.H. Wang, M.H. Lai, H. Yao, H. Liu, H.X. Ma, Effectiveness of abdominal acupuncture for patients with obesity-type polycystic ovary syndrome: a randomized controlled trial. J. Altern. Complement. Med. 19, 740–745 (2013)PubMedGoogle Scholar
  113. 113.
    H. Zhang, Y. Peng, Z. Liu, S. Li, Z. Lv, L. Tian, J. Zhu, X. Zhao, M. Chen, Effects of acupuncture therapy on abdominal fat and hepatic fat content in obese children: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. J. Altern. Complement. Med. 17, 413–420 (2011)PubMedGoogle Scholar
  114. 114.
    B. Xu, J.H. Yuan, Z.C. Liu, M. Chen, X.J. Wang, Effect of acupuncture on plasma peptide YY in the patient of simple obesity. Zhongguo zhen jiu (Chin. Acupunct. Moxib.) 25, 837–840 (2005)Google Scholar
  115. 115.
    F. Gucel, B. Bahar, C. Demirtas, S. Mit, C. Cevik, Influence of acupuncture on leptin, ghrelin, insulin and cholecystokinin in obese women: a randomised, sham-controlled preliminary trial. Acupunct. Med. 30, 203–207 (2012)PubMedGoogle Scholar
  116. 116.
    H. Abdi, B. Zhao, M. Darbandi, M. Ghayour-Mobarhan, S. Tavallaie, A.A. Rahsepar, S.M. Parizadeh, M. Safariyan, M. Nemati, M. Mohammadi, P. Abbasi-Parizad, S. Darbandi, S. Akhlaghi, G.A. Ferns, The effects of body acupuncture on obesity: anthropometric parameters, lipid profile, and inflammatory and immunologic markers. Sci.World. J. 2012, 603539 (2012)Google Scholar
  117. 117.
    S.H. Cho, J.S. Lee, L. Thabane, J. Lee, Acupuncture for obesity: a systematic review and meta-analysis. Int. J. Obes. 33, 183–196 (2009)Google Scholar
  118. 118.
    K.M. Hoeger, L. Kochman, N. Wixom, K. Craig, R.K. Miller, D.S. Guzick, A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: a pilot study. Fertil. Steril. 82, 421–429 (2004)PubMedGoogle Scholar
  119. 119.
    J. Xiao, S. Chen, C. Zhang, S. Chang, The effectiveness of metformin ovulation induction treatment in patients with PCOS: a systematic review and meta-analysis. Gynecol. Endocrinol. 28, 956–960 (2012)PubMedGoogle Scholar
  120. 120.
    M. Shaker, Z.I. Mashhadani, A.A. Mehdi, Effect of Treatment with Metformin on Omentin-1, Ghrelin and other Biochemical, Clinical Features in PCOS Patients. Oman Med. J. 25, 289–293 (2010)PubMedCentralPubMedGoogle Scholar
  121. 121.
    P.F. Svendsen, L. Nilas, S. Madsbad, J.J. Holst, Incretin hormone secretion in women with polycystic ovary syndrome: roles of obesity, insulin sensitivity, and treatment with metformin. Metabolism 58, 586–593 (2009)PubMedGoogle Scholar
  122. 122.
    W. Wei, H. Zhao, A. Wang, M. Sui, K. Liang, H. Deng, Y. Ma, Y. Zhang, H. Zhang, Y. Guan, A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur. J. Endocrinol. 166, 99–105 (2012)PubMedGoogle Scholar
  123. 123.
    Y. An, Z. Sun, Y. Zhang, B. Liu, Y. Guan, M. Lu, The use of berberine for women with polycystic ovary syndrome undergoing IVF treatment. Clin. Endocrinol. 80, 425–431 (2014)Google Scholar
  124. 124.
    X. Zhang, Y. Zhao, M. Zhang, X. Pang, J. Xu, C. Kang, M. Li, C. Zhang, Z. Zhang, Y. Zhang, X. Li, G. Ning, L. Zhao, Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PloS One 7, e42529 (2012)PubMedCentralPubMedGoogle Scholar
  125. 125.
    W. Xie, D. Gu, J. Li, K. Cui, Y. Zhang, Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6 J mice. PloS One 6, e24520 (2011)PubMedCentralPubMedGoogle Scholar
  126. 126.
    T. Vilsboll, M. Christensen, A.E. Junker, F.K. Knop, L.L. Gluud, Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. Br. Med. J. 344, d7771 (2012)Google Scholar
  127. 127.
    M. Monami, I. Dicembrini, N. Marchionni, C.M. Rotella, E. Mannucci, Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp. Diabetes Res. 2012, 672658 (2012)PubMedCentralPubMedGoogle Scholar
  128. 128.
    A.S. Kelly, K.D. Rudser, B.M. Nathan, C.K. Fox, A.M. Metzig, B.J. Coombes, A.K. Fitch, E.M. Bomberg, M.J. Abuzzahab, The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. J. Am. Med. Assoc. Pediatr. 167, 355–360 (2013)Google Scholar
  129. 129.
    Gallwitz, B, Extra-pancreatic effects of incretin-based therapies. Endocrine. (2014) [Epub ahead of print]Google Scholar
  130. 130.
    C. Verdich, A. Flint, J.P. Gutzwiller, E. Naslund, C. Beglinger, P.M. Hellstrom, S.J. Long, L.M. Morgan, J.J. Holst, A. Astrup, A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001)PubMedGoogle Scholar
  131. 131.
    A.S. Kelly, A.M. Metzig, K.D. Rudser, A.K. Fitch, C.K. Fox, B.M. Nathan, M.M. Deering, B.L. Schwartz, M.J. Abuzzahab, L.M. Gandrud, A. Moran, C.J. Billington, Schwarzenberg, SJ:Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity 20, 364–370 (2012)PubMedCentralPubMedGoogle Scholar
  132. 132.
    R.A. DeFronzo, R.E. Ratner, J. Han, D.D. Kim, M.S. Fineman, A.D. Baron, Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005)PubMedGoogle Scholar
  133. 133.
    M. Davies, R. Pratley, M. Hammer, A.B. Thomsen, R. Cuddihy, Liraglutide improves treatment satisfaction in people with Type 2 diabetes compared with sitagliptin, each as an add on to metformin. Diabet. Med. 28, 333–337 (2011)PubMedGoogle Scholar
  134. 134.
    J. Rosenstock, L.J. Klaff, S. Schwartz, J. Northrup, J.H. Holcombe, K. Wilhelm, M. Trautmann, Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care 33, 1173–1175 (2010)PubMedCentralPubMedGoogle Scholar
  135. 135.
    K. Elkind-Hirsch, O. Marrioneaux, M. Bhushan, D. Vernor, R. Bhushan, Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 2670–2678 (2008)PubMedGoogle Scholar
  136. 136.
    S.M. Jensterle, T. Kocjan, M. Pfeifer, N.A. Kravos, A. Janez, Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur. J. Endocrinol. 170, 451–459 (2014)Google Scholar
  137. 137.
    H.F. Escobar-Morreale, Surgical management of metabolic dysfunction in PCOS. Steroids 77, 312–316 (2012)PubMedGoogle Scholar
  138. 138.
    H.F. Escobar-Morreale, J.I. Botella-Carretero, F. Alvarez-Blasco, J. Sancho, J.L. San Millan, The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 90, 6364–6369 (2005)PubMedGoogle Scholar
  139. 139.
    G.M. Eid, D.R. Cottam, L.M. Velcu, S.G. Mattar, M.T. Korytkowski, G. Gosman, P. Hindi, P.R. Schauer, Effective treatment of polycystic ovarian syndrome with Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 1, 77–80 (2005)PubMedGoogle Scholar
  140. 140.
    R. Morinigo, V. Moize, M. Musri, A.M. Lacy, S. Navarro, J.L. Marin, S. Delgado, R. Casamitjana, J. Vidal, Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91, 1735–1740 (2006)PubMedGoogle Scholar
  141. 141.
    S. Evans, Z. Pamuklar, J. Rosko, P. Mahaney, N. Jiang, C. Park, A. Torquati, Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction. Surg. Endosc. 26, 1086–1094 (2012)PubMedCentralPubMedGoogle Scholar
  142. 142.
    M.B. Mumphrey, L.M. Patterson, H. Zheng, H.R. Berthoud, Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol. Motil. 25, e70–e79 (2013)PubMedCentralPubMedGoogle Scholar
  143. 143.
    J. Korner, M. Bessler, L.J. Cirilo, I.M. Conwell, A. Daud, N.L. Restuccia, S.L. Wardlaw, Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J. Clin. Endocrinol. Metab. 90, 359–365 (2005)PubMedGoogle Scholar
  144. 144.
    C.W. le Roux, R. Welbourn, M. Werling, A. Osborne, A. Kokkinos, A. Laurenius, H. Lonroth, L. Fandriks, M.A. Ghatei, S.R. Bloom, T. Olbers, Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246, 780–785 (2007)PubMedGoogle Scholar
  145. 145.
    C.N. Ochner, E. Stice, E. Hutchins, L. Afifi, A. Geliebter, J. Hirsch, J. Teixeira, Relation between changes in neural responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience 209, 128–135 (2012)PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineRenji Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations