, Volume 48, Issue 1, pp 233–240 | Cite as

Thyroid hormones regulate skeletal muscle regeneration after acute injury

  • Anna Lúcia R. C. Leal
  • João Paulo C. Albuquerque
  • Marina S. Matos
  • Rodrigo S. Fortunato
  • Denise P. Carvalho
  • Doris Rosenthal
  • Vânia Maria Corrêa da Costa
Original Article


We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03 %) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.


Skeletal muscle Thyroid hormones Regeneration Injury 



The authors gratefully acknowledge the technical assistance of Advaldo Nunes Bezerra, José Humberto Tavares de Abreu, Norma Lima de Araújo Faria, and Wagner Nunes Bezerra. This work was supported by the grants from Fundação Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

12020_2014_271_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 kb)


  1. 1.
    C.E. Stewart, J. Rittweger, Adaptive processes in skeletal muscle: molecular regulators and genetic influences. J. Musculoskelet. Neuronal Interact. 6(1), 73–86 (2006)PubMedGoogle Scholar
  2. 2.
    P.S. Zammit, J.R. Beauchamp, The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193–204 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    J.G. Tidball, Inflammatory processes in muscle injury and repair. Am J Physiol. Regul. Integr. Comp. Physiol. 288, R345–R353 (2005)CrossRefPubMedGoogle Scholar
  4. 4.
    S. Brunelli, P. Rovere-Querini, The immune system and the repair of skeletal muscle. Pharmacol. Res. 5, 117–121 (2008)CrossRefGoogle Scholar
  5. 5.
    M.I. Massimimo, E. Rapizzi, M. Cantini, L.D. Libera, F. Mazzoleni, P. Arslan, U. Carraro, ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem. Biophys. Res. Commun. 235(3), 754–759 (1997)CrossRefGoogle Scholar
  6. 6.
    T.A. Robertson, M.A. Maley, M.D. Grounels, J.M. Papadimitriou, The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp. Cell Res. 207, 321–331 (1993)CrossRefPubMedGoogle Scholar
  7. 7.
    L.A. Di Pietro, Wound healing: the role of the macrophage and other immune cells. Shock 4, 233–240 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Summan, G.L. Warren, R.R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, P.P. Simeonova, Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1488–R1495 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    J.M. Peterson, F.X. Pizza, Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J. Appl. Physiol. 106, 130–137 (2009)CrossRefPubMedGoogle Scholar
  10. 10.
    T. Soukup, I. Jirmanová, Regulation of myosin expression in developing regeneratin extrafusal and intrafusal muscle fibers with special emphasis on the role of thyroid hormones. Physiol. Res. 49, 617–633 (2000)PubMedGoogle Scholar
  11. 11.
    S. D’Arezzo, S. Incerpi, F.B. Davis, F. Accontia, M. Marino, R.N. Farias, P.J. Davis, Rapid nongenomic effects of 3,5,3′-triiodo-l-thronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145(12), 5694–5703 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    B.H. Penn, C.A. Berker, D.A. Bergustrom, J. Tapscott, How to MEK muscle. Mol. Cell 8(2), 245–246 (2001)CrossRefPubMedGoogle Scholar
  13. 13.
    R.L. Perry, M.H. Parker, M.A. Rudnicki, Activated MEK-1 binds to nuclear Myo D transcriptional complex to repress transactivation. Mol. Cell 8(2), 291–301 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    D.G. Moreira, M.P. Marassi, V.M. Corrêa da Costa, D.P. Carvalho, D. Rosenthal, Effects of ageing and pharmacological hypothyroidism on pituitary–thyroidal axis of Dutch–Miranda and Wistar rats. Exp. Gerontol. 40, 330–334 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    A.L.R.C. Leal, T.U. Pantaleão, D.G. Moreira, M.P. Marassi, V.S. Pereira, D. Rosenthal, V.M. Corrêa da Costa, Hypothyroidism and hyperthyroidism modulates Ras–MAPK intracellular pathway in murine thyroids. Endocrine 31(2), 174–178 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    T.U. Pantaleão, F. Mousovich, D. Rosenthal, D.P. Carvalho, V.M. Corrêa da Costa, Effect of serum estradiol and leptin levels on thyroid function, food intake and body weight gain in female Wistar rats. Steroids 75, 638–642 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    M.M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefPubMedGoogle Scholar
  18. 18.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25, 402–408 (2001)CrossRefPubMedGoogle Scholar
  19. 19.
    G.L. Warren, T. Hulderman, D. Mishra, X. Gao, L. Millecchia, L. O’Farrell, W.A. Kuziel, P.P. Simeonova, Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 19, 413–415 (2001)Google Scholar
  20. 20.
    B.K. Pedersen, M.A. Febbraio, Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Marsili, D. Tang, J.W. Harney, P. Singh, A.M. Zavacki, M. Dentice, D. Salvatore, P.R. Larsen, Type II iodothyronine deiodinase provides intracellular 3, 5, 3′-triiodothyronine to normal and regenerating mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 301, E818–E824 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    M. Dentice, A. Marsili, R. Ambrosio, O. Guardiola, A. Sibilio, J. Paik, G. Minchiotti, R.A. DePinho, G. Fenzi, P.R. Larsen, D. Salvatore, The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J. Clin. Investig. 120, 4021–4030 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Ambrosio, V. Damiano, A. Sibilio, M.A. De Stefano, V.E. Avvedimento, D. Salvatore, M. Dentice, Epigenetic control of type 2 and 3 deiodinases in myogenesis: role of Lysine-specific Demethylase enzyme and FoxO3. Nucleic Acids Res. 41(6), 3551–3562 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    D. Salvatore, W.S. Simonides, M. Dentice, A.M. Zavacki, P.R. Larsen, Thyroid hormones and skeletal muscle—new insights and potential implications. Nat. Rev. (2013). doi: 10.1038/nrendo.2013.238 Google Scholar
  25. 25.
    M.P. Rozing, R.G.J. Westendorp, A.B. Maier, C.A. Wijsman, M. Frölich, A.J.M. de Craen, D. van Heemst, Serum triiodothyronine levels and inflammatory cytokine production capacity. Age 34, 195–201 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    K. Yeow, C. Cabane, L. Turchi, G. Ponzio, B. Dérijard, Increased MAPK signaling during in vitro muscle wounding. Biochem. Biophys. Res. Commun. 293, 112–119 (2002)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Murgia, A.L. Serrano, E. Calábria, G. Pallafacchina, T. Lomo, S. Schiaffino, Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat. Cell Biol. 2, 142–147 (2000)CrossRefPubMedGoogle Scholar
  28. 28.
    A. Rinnov, C. Yfanti, S. Nielsen, T.C.A. Akerstrom, L. Peijs, A. Zankari, C.P. Fischer, B.K. Pedersen, Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine 45, 271–278 (2014)CrossRefPubMedGoogle Scholar
  29. 29.
    L. Ceglia, D.A. Rivas, R.M. Pojednic, L.L. Price, S.S. Harris, D. Smith, R.A. Fielding, B.D. Hughes, Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle. Endocrine 44, 454–464 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012)CrossRefPubMedGoogle Scholar
  31. 31.
    D.T. Thomas, Could vitamin D and bicarbonate supplementation synergize to mitigate age-related loss of muscle? Endocrine 44, 280–282 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Cianferotti, M.L. Brandi, Muscle-bone interactions: basic and clinical aspects. Endocrine 45, 165–177 (2014)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anna Lúcia R. C. Leal
    • 1
  • João Paulo C. Albuquerque
    • 1
  • Marina S. Matos
    • 1
  • Rodrigo S. Fortunato
    • 1
  • Denise P. Carvalho
    • 1
  • Doris Rosenthal
    • 1
  • Vânia Maria Corrêa da Costa
    • 1
    • 2
  1. 1.Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.VM Corrêa da CostaInstituto de Biofísica Carlos Chagas FilhoRio de JaneiroBrazil

Personalised recommendations