, Volume 47, Issue 3, pp 869–877 | Cite as

Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats

  • Svetlana TrifunovićEmail author
  • Milica Manojlović-Stojanoski
  • Vladimir Ajdžanović
  • Nataša Nestorović
  • Nataša Ristić
  • Ivana Medigović
  • Verica Milošević
Original Article


The hypothalamic-pituitary somatotropic system plays a pivotal role in the regulation of physiological processes and metabolism, which is modulated by gonadal steroids. Considering that genistein belongs to the phytoestrogen family and acts via similar mechanisms to estrogens, the present study was designed to demonstrate whether genistein modulates the morphofunctional characteristic of somatotrophs [growth hormone (GH) cells] in adult rats in comparison with the effects of estradiol. In the study, the orchidectomized adult rats were used as an appropriate model system for testing the effects of this hormone-like substance. Changes in the pituitary somatotrophs were evaluated histologically and stereologically, while GH level was determined biochemically. Using immunolabelling and stereological methods, we showed that orchidectomy (Orx) provoked the decrease of GH cell volume density. After estradiol treatment of Orx rats, the most prominent change concerned the pituitary relative intensity of GH fluorescence and circulating GH level, which were elevated 77 % and 4.7-fold, respectively. Clearly, in contrast to orchidectomy, estradiol treatment enhanced the GH cells activity. Genistein treatment increased pituitary weight and volume, GH cell volume density, the total number of GH cells, and GH blood concentration (1.3-fold) in comparison to the Orx group. Although identical tendencies followed estradiol and genistein administration, the changes observed after genistein treatment were milder compared to estradiol treatment.


Genistein Estradiol Somatotrophs Histology Stereology 



This work was supported by the Ministry of Education and Science of Serbia, Grant number 173009. The authors wish to express their gratitude to Dr. Anna Nikolic, Ph.D. for language correction of the manuscript and company MOSS & HEMOSS.

Conflict of interest

The authors and manufacturers disclose no actual potential conflict of interest.


  1. 1.
    A. Giustina, J.D. Veldhuis, Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998)PubMedGoogle Scholar
  2. 2.
    M.J. Rennie, Claims for the anabolic effects of growth hormone: a case of the emperor’s new clothes? Br. J. Sports Med. 37, 100–105 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    E.E. Muller, V. Locatelli, D. Cocchi, Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)PubMedGoogle Scholar
  4. 4.
    L.A. Frohman, R.D. Kineman, J. Kamegai, S. Park, L.T. Teixeira, K.T. Coschigano, J.J. Kopchick, Secretagogues and the somatotrope: signaling and proliferation. Recent Prog. Horm. Res. 55, 269–290 (2000)PubMedGoogle Scholar
  5. 5.
    C. Chen, Growth hormone secretagogue actions on the pituitary gland: multiple receptors for multiple ligands? Clin. Exp. Pharmacol. Physiol. 27, 323–329 (2000)PubMedCrossRefGoogle Scholar
  6. 6.
    S. Perrini, L. Laviola, M.C. Carreira, A. Cignarelli, A. Natalicchio, F. Giorgino, The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205, 201–210 (2010)PubMedCrossRefGoogle Scholar
  7. 7.
    J.A. Chowen, J. Argente, I. Torres-Alemán, S. González-Parra, L.M. García-Segura, Effects of the neonatal sex steroid environment on growth hormone-releasing hormone and somatostatin gene expression. J. Pediatr. Endocrinol. 6, 211–218 (1993)PubMedCrossRefGoogle Scholar
  8. 8.
    T.L. Dellovade, I. Merchenthaler, Estrogen regulation of neurokinin B gene expression in the mouse arcuate nucleus is mediated by estrogen receptor alpha. Endocrinology 145, 736–742 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    X. Huang, R.E. Harlan, Androgen receptor immunoreactivity in somatostatin neurons of the periventricular nucleus but not in the bed nucleus of the stria terminalis in male rats. Brain Res. 652, 291–296 (1994)PubMedCrossRefGoogle Scholar
  10. 10.
    G.V. Childs, M. Iruthayanathan, N. Akhter, B.W. Johnson, Estrogen mediated cross talk between the ovary and pituitary somatotrope. Pre-ovulatory support for reproductive activity. Mol. Cell. Endocrinol. 247(1–2), 60–63 (2006)PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    W. Saeger, S. Schreiber, D.K. Ludecke, Androgen receptor in pituitary adenomas of the gonadotroph cell complex. Pathol. Res. Pract. 196, 771–773 (2000)PubMedCrossRefGoogle Scholar
  12. 12.
    N. Kimura, S. Tomizawa, K.N. Arai, N. Kimura, Chronic treatment with estrogen up-regulates expression of sst2 messenger ribonucleic acid (mRNA) but down-regulates expression of sst5 mRNA in rat pituitaries. Endocrinology 139, 1573–1580 (1998)PubMedGoogle Scholar
  13. 13.
    H.B. Patisaul, Phytoestrogen action in the adult and developing brain. J. Neuroendocrinol. 17, 57–64 (2005)PubMedCrossRefGoogle Scholar
  14. 14.
    V. Kalaiselvan, M. Kalaivani, A. Vijayakumar, K. Sureshkumar, K. Venkateskumar, Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn Rev 4, 111–117 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    I. Medigović, N. Ristić, S. Trifunović, M. Manojlović-Stojanoski, V. Milošević, D. Zikić, N. Nestorović, Genistein affects ovarian folliculogenesis: a stereological study. Microsc. Res. Tech. 75, 1691–1699 (2012)PubMedCrossRefGoogle Scholar
  16. 16.
    B. Sosić-Jurjević, B. Filipović, V. Ajdzanović, S. Savin, N. Nestorović, V. Milosević, M. Sekulić, Suppressive effects of genistein and daidzein on pituitary-thyroid axis in orchidectomized middle-aged rats. Exp. Biol. Med. (Maywood) 235, 590–598 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Ajdžanović, B. Šosić-Jurjević, B. Filipović, S. Trifunović, M. Manojlović-Stojanoski, M. Sekulić, V. Milosević, Genistein-induced histomorphometric and hormone secreting changes in the adrenal cortex in middle-aged rats. Exp. Biol. Med. (Maywood) 234, 148–156 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Górski, A. Gajewska, K. Romanowicz, T. Misztal, Genistein-induced pituitary prolactin gene expression and prolactin release in ovariectomized ewes following a series of intracerebroventricular infusions. Reprod. Biol. 7, 233–246 (2007)PubMedGoogle Scholar
  19. 19.
    S. Trifunović, M. Manojlović-Stojanoski, V. Ajdzanović, N. Nestorović, N. Ristić, I. Medigović, V. Milošević, Genistein stimulates the hypothalamo-pituitary-adrenal axis in adult rats: morphological and hormonal study. Histol. Histopathol. 27, 627–640 (2012)PubMedGoogle Scholar
  20. 20.
    V.Z. Ajdzanovic, B.T. Sosic-Jurjevic, B.R. Filipóvic, S.L. Trifunovic, B.D. Brkic, M.I. Sekulic, V. Milosevic, Lj.: Genistein affects the morphology of pituitary ACTH cells and decreases circulating levels of ACTH and corticosterone in middle-aged male rats. Biol. Res. 42, 13–23 (2009)Google Scholar
  21. 21.
    C. Picherit, V. Coxam, C. Bennetau-Pelissero, S. Kati-Coulibaly, M.J. Davicco, Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. J. Nutr. 130, 1675–1681 (2000)PubMedGoogle Scholar
  22. 22.
    S. Ohno, Y. Nakajima, K. Inoue, H. Nakazawa, S. Nakajin, Genistein administration decreases serum corticosterone and testosterone levels in rats. Life Sci. 74(6), 733–742 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    D. Doerge, D. Sheehan, Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 110, 349–353 (2002)PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    W.N. Jefferson, E. Padilla-Banks, R.R. Newbold, Disruption of the female reproductive system by the phytoestrogen genistein. Reprod. Toxicol. 23, 308–316 (2007)PubMedCrossRefGoogle Scholar
  25. 25.
    J.C. Waters, J.R. Swedlow, Interpreting fluorescence microscopy images and measurements. in Evaluating Techniques in Biochemical Research (Cell Press Cambridge, 2007), pp. 37–42Google Scholar
  26. 26.
    H.J. Gundersen, Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R Thompson. J. Microsc. 143, 3–45 (1986)PubMedCrossRefGoogle Scholar
  27. 27.
    H.J. Gundersen, E.B. Jensen, The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229–263 (1987)PubMedCrossRefGoogle Scholar
  28. 28.
    K.A. Dorph-Petersen, J.R. Nyengaard, H.J. Gundersen, Tissue shrinkage and unbiased stereological estimation of particle number and size. J. Microsc. 204, 232–246 (2001)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Manojlović-Stojanoski, N. Nestorović, N. Ristić, S. Trifunović, B. Filipović, B. Sošić-Jurjević, M. Sekulić, Unbiased stereological estimation of the rat fetal pituitary volume and of the total number and volume of TSH cells after maternal dexamethasone application. Microsc. Res. Tech. 73, 1077–1085 (2010)PubMedCrossRefGoogle Scholar
  30. 30.
    A.R. de Lima, J.R. Nyengaard, A.A. Jorge, J.C. Balieiro, C. Peixoto, E.T. Fioretto, C.E. Ambrósio, M.A. Miglino, M. Zatz, A.A. Ribeiro, Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers. Growth Horm. IGF Res. 17, 480–491 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    M.O. Dada, G.T. Campbell, C.A. Blake, Pars distalis cell quantification in normal adult male and female rats. J. Endocrinol. 101(1), 87–94 (1984)PubMedCrossRefGoogle Scholar
  32. 32.
    K. Inoue, S. Tanaka, K. Kurosumi, Mitotic activity of gonadotropes in the anterior pituitary of the castrated male rat. Cell Tissue Res. 240, 271–276 (1985)PubMedCrossRefGoogle Scholar
  33. 33.
    E. Seuntjens, A. Hauspie, H. Vankelecom, C. Denef, Ontogeny of plurihormonal cells in the anterior pituitary of the mouse, as studied by means of hormone mRNA detection in single cells. J. Neuroendocrinol. 14, 611–619 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    M. Mignot, D.C. Skinner, Colocalization of GH, TSH and prolactin, but not ACTH, with betaLH-immunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell Tissue Res. 319(3), 413–421 (2005)PubMedCrossRefGoogle Scholar
  35. 35.
    R.J. Handa, D.L. Reid, J.A. Resko, Androgen receptors in brain and pituitary of female rats: cyclic changes and comparisons with the male. Biol. Reprod. 34(2), 293–303 (1986)PubMedCrossRefGoogle Scholar
  36. 36.
    L.H. Burgess, R.J. Handa, Hormonal regulation of androgen receptor mRNA in the brain and anterior pituitary gland of the male rat. Brain Res. Mol. Brain Res. 19(1–2), 31–38 (1993)PubMedCrossRefGoogle Scholar
  37. 37.
    S. González-Parra, J.A. Chowen, L.M. García-Segura, J. Argente, In vivo and in vitro regulation of pituitary transcription factor-1 (Pit-1) by changes in the hormone environment. Neuroendocrinology 63, 3–15 (1996)PubMedCrossRefGoogle Scholar
  38. 38.
    S. González-Parra, J. Argente, L.M. García-Segura, J.A. Chowen, Cellular composition of the adult rat anterior pituitary is influenced by the neonatal sex steroid environment. Neuroendocrinology 68(3), 152–162 (1998)PubMedCrossRefGoogle Scholar
  39. 39.
    M. Fodor, C.B. Oudejans, H.A. Delemarre-van de Waal, Absence of androgen receptor in the growth hormone releasing hormone-containing neurones in the rat mediobasal hypothalamus. J. Neuroendocrinol. 13, 724–777 (2001)PubMedCrossRefGoogle Scholar
  40. 40.
    E.W. Bingaman, D.J. Magnuson, T.S. Gray, R.J. Handa, Androgen inhibits the increases in hypothalamic corticotropin-releasing hormone (CRH) and CRH-immunoreactivity following gonadectomy. Neuroendocrinology 593, 228–234 (1994)CrossRefGoogle Scholar
  41. 41.
    J. Du, D.S. Lorrain, E.M. Hull, Castration decreases extracellular, but increases intracellular, dopamine in medial preoptic area of male rats. Brain Res. 782(1–2), 11–17 (1998)PubMedCrossRefGoogle Scholar
  42. 42.
    M. Yan, M.E. Jones, M. Hernandez, D. Liu, E.R. Simpson, C. Chen, Functional modification of pituitary somatotropes in the aromatase knockout mouse and the effect of estrogen replacement. Endocrinology 145(2), 604–612 (2004)PubMedCrossRefGoogle Scholar
  43. 43.
    J.F. Amara, C. Van Itallie, P.S. Dannies, Regulation of prolactin production and cell growth by estradiol: difference in sensitivity to estradiol occurs at level of messenger ribonucleic acid accumulation. Endocrinology 120, 264–271 (1987)PubMedCrossRefGoogle Scholar
  44. 44.
    G.V. Childs, Development of gonadotropes may involve cyclic transdifferentiation of growth hormone cells. Arch. Physiol. Biochem. 110, 42–49 (2002)PubMedCrossRefGoogle Scholar
  45. 45.
    G. Tulipano, C. Bonfanti, C. Poiesi, A. Burattin, S. Turazzi, G. Barone, R. Cozzi, A. Bollati, D. Valle, A. Giustina, Effects of the selective estrogen receptor modulator LY117018 on growth hormone secretion: in vitro studies. Metabolism 53, 563–570 (2004)PubMedCrossRefGoogle Scholar
  46. 46.
    G.V. Childs, M. Iruthayanathan, N. Akhter, B.W. Johnson, Estrogen mediated cross talk between the ovary and pituitary somatotrope. Pre-ovulatory support for reproductive activity. Mol. Cell Endocrinol. 247, 60–63 (2006)PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    H. Werner, Y. Koch, F.J. Baldino, I. Gozes, Steroid regulation of somatostatin mRNA in the rat hypothalamus. J. Biol. Chem. 263, 7666–7671 (1988)PubMedGoogle Scholar
  48. 48.
    L.J. Murphy, H.G. Friesen, Differential effects of estrogen and growth hormone on uterine and hepatic insulin-like growth factor I expression in the ovariectomized hypophysectomized rat. Endocrinology 122, 325–332 (1988)PubMedCrossRefGoogle Scholar
  49. 49.
    T. Shimizu, J. Kamegai, H. Tamura, S. Ishii, H. Sugihara, S. Oikawa, The estrogen receptor (ER) alpha, but not ER beta, gene is expressed in hypothalamic growth hormone-releasing hormone neurons of the adult female rat. Neurosci. Res. 52, 121–125 (2005)PubMedCrossRefGoogle Scholar
  50. 50.
    E.D. Lephart, T.W. West, K.S. Weber, R.W. Rhees, K.D. Setchell, H. Adlercreutz, T.D. Lund, Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol. Teratol. 24, 5–16 (2002)PubMedCrossRefGoogle Scholar
  51. 51.
    T. Misztal, M. Wankowska, K. Gorski, K. Romanowicz, Central estrogen-like effect of genistein on growth hormone secretion in the ewe. Acta Neurobiol. Exp. 67, 411–419 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Svetlana Trifunović
    • 1
    Email author
  • Milica Manojlović-Stojanoski
    • 1
  • Vladimir Ajdžanović
    • 1
  • Nataša Nestorović
    • 1
  • Nataša Ristić
    • 1
  • Ivana Medigović
    • 1
  • Verica Milošević
    • 1
  1. 1.Institute for biological research IBISSBelgradeSerbia

Personalised recommendations