Advertisement

Endocrine

, Volume 47, Issue 3, pp 783–792 | Cite as

Assessment of early renal damage in diabetic rhesus monkeys

  • Dan Wang
  • Jingping Liu
  • Sirong He
  • Chengshi Wang
  • Younan Chen
  • Lichaun Yang
  • Fang Liu
  • Yan Ren
  • Haoming Tian
  • Guang Yang
  • Guangneng Liao
  • Lan Li
  • Meimei Shi
  • Yujia Yuan
  • Jiuming Zhao
  • Jingqiu ChengEmail author
  • Yanrong LuEmail author
Original Article

Abstract

The objectives of the study were to improve the model system of diabetic nephropathy in nonhuman primates and assess the early renal damage. Diabetes was induced in monkeys by streptozotocin, and the animals were administered exogenous insulin to control blood glucose (BG). Animals were divided into four groups, including the normal group (N = 3), group A (streptozotocin diabetic model with control of BG < 10 mmol/L, N = 3), group B (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L, N = 4), and group C (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L and high-sodium and high-fat diet, N = 4). The following parameters were evaluated: (1) blood biochemistry and routine urinalysis, (2) color Doppler ultrasound, (3) angiography, (4) renal biopsy, and (5) renal fibrosis-related gene expression levels. Animals in group C developed progressive histologic changes with typical diabetic nephropathy resembling diabetic nephropathy in human patients and exhibited accelerated development of diabetic nephropathy compared with other nonhuman primate models. Significant changes in the expression of the Smad2/3 gene and eNOS in renal tissue were also observed in the early stage of diabetic nephropathy. In conclusion, our model is an excellent model of diabetic nephropathy for understanding the pathogenesis of diabetic nephropathy.

Keywords

Diabetic nephropathy Early renal damage Animal model Rhesus monkeys Streptozotocin 

Notes

Acknowledgments

This study was supported by the Program of Natural Science Foundation of China (No. 81370824) and National Program for High Technology Research and Development of China (No. 2012AA020702).

Conflict of interest

None.

Supplementary material

12020_2014_211_MOESM1_ESM.doc (17 kb)
Supplementary material 1 (DOC 17 kb)
12020_2014_211_MOESM2_ESM.doc (770 kb)
Supplementary Figure 1. Renal ultrasound blood flow distribution and spectrum in control and experimental groups(DOC 769 kb)
12020_2014_211_MOESM3_ESM.doc (766 kb)
Supplementary Figure 2. Retinal capillaries was normal in fundus examination. Left and right eyes of monkey from group C (DOC 766 kb)
12020_2014_211_MOESM4_ESM.doc (1.8 mb)
Supplementary Figure 3. Representative mages of H&E stained kidneys from control and 3 experimental groups before we imposed any interventions. Scale bar 100 μm (DOC 1815 kb)

References

  1. 1.
    S. Dronavalli, I. Duka, G.L. Bakris, The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4(8), 444–452 (2008)PubMedCrossRefGoogle Scholar
  2. 2.
    C.F. Howard Jr, Nonhuman primates as models for the study of human diabetes mellitus. Diabetes 31(Suppl 1 Pt 2), 37–42 (1982)PubMedCrossRefGoogle Scholar
  3. 3.
    S.E. Thomson, S.V. McLennan, P.D. Kirwan, S.J. Heffernan, A. Hennessy, D.K. Yue, S.M. Twigg, Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J. Diabetes Complic. 22(4), 284–294 (2008)CrossRefGoogle Scholar
  4. 4.
    M.C. Thomas, J. Moran, C. Forsblom, V. Harjutsalo, L. Thorn, A. Ahola, J. Wadén, N. Tolonen, M. Saraheimo, D. Gordin, P.H. Groop, FinnDiane Study Group, The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34(4), 861–866 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    J.M. Luther, Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23(1), 10–12 (2012)PubMedCrossRefGoogle Scholar
  6. 6.
    A.D. Dobrian, S.D. Schriver, T. Lynch, R.L. Prewitt, Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am. J. Physiol. Renal. Physiol. 285(4), F619–F628 (2003). Epub 2003 Jun 10PubMedGoogle Scholar
  7. 7.
    K. Alexandraki, C. Piperi, C. Kalofoutis, J. Singh, A. Alaveras, A. Kalofoutis, Inflammatory process in type 2 diabetes: The role of cytokines. Ann. N. Y. Acad. Sci. 1084, 89–117 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    K. Kalantarinia, A.S. Awad, H.M. Siragy, Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidiabetic Nephrop. Int. 64(4), 1208–1213 (2003)Google Scholar
  9. 9.
    A. Nakamura, K. Shikata, M. Hiramatsu, T. Nakatou, T. Kitamura, J. Wada, T. Itoshima, H. Makino, Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28(12), 2890–2895 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    G.H. Tesch, MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 294(4), F697–F701 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    A.C. Chung, H.Y. Lan, Chemokines in renal injury. J. Am. Soc. Nephrol. 22(5), 802–809 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    T. Nakagawa, W. Sato, O. Glushakova, M. Heinig, T. Clarke, M. Campbell-Thompson, Y. Yuzawa, M.A. Atkinson, R.J. Johnson, B. Croker, Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18(2), 539–550 (2007). Epub 2007 Jan 3PubMedCrossRefGoogle Scholar
  13. 13.
    M. Tong, Y. Wang, Y. Wang, H. Chen, C. Wang, L. Yang, J. Axelsson, B. Lindholm, Genistein attenuates advanced glycation end product-induced expression of fibronectin and connective tissue growth factor. Am. J. Nephrol. 36(1), 34–40 (2012)PubMedCrossRefGoogle Scholar
  14. 14.
    I.S. Park, H. Kiyomoto, S.L. Abboud, H.E. Abboud, Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46(3), 473–480 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Sato, Y. Muragaki, S. Saika, A.B. Roberts, A. Ooshima, Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112(10), 1486–1494 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    X. Jin, L. Zeng, S. He, Y. Chen, B. Tian, G. Mai, G. Yang, L. Wei, Y. Zhang, H. Li, L. Wang, C. Qiao, J. Cheng, Y. Lu, Comparison of single high-dose streptozotocin with partial pancreatectomy combined with low-dose streptozotocin for diabetes induction in rhesus monkeys. Exp. Biol. Med. (Maywood). 235(7), 877–885 (2010)PubMedCrossRefGoogle Scholar
  17. 17.
    H. Sugimoto, V.S. LeBleu, D. Bosukonda, P. Keck, G. Taduri, W. Bechtel, H. Okada, W. Carlson Jr, P. Bey, M. Rusckowski, B. Tampe, D. Tampe, K. Kanasaki, M. Zeisberg, R. Kalluri, Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 18(3), 396–404 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, M. Shichiri, Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995)PubMedCrossRefGoogle Scholar
  19. 19.
    P.H. Wang, J. Lau, T.C. Chalmers, Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet 341(8856), 1306–1309 (1993)PubMedCrossRefGoogle Scholar
  20. 20.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of diabetes Interventions and Complications Research Group, Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287(19), 2563–2569 (2002)CrossRefGoogle Scholar
  21. 21.
    I. Ranjit Unnikrishnan, R.M. Anjana, V. Mohan, Importance of controlling diabetes early–the concept of metabolic memory, legacy effect and the case for early insulinisation. J. Assoc. Physicians India 59, 8–12 (2011)PubMedGoogle Scholar
  22. 22.
    T.W. Tervaert, A.L. Mooyaart, K. Amann, A.H. Cohen, H.T. Cook, C.B. Drachenberg, F. Ferrario, A.B. Fogo, M. Haas, E. de Heer, K. Joh, L.H. Noël, J. Radhakrishnan, S.V. Seshan, I.M. Bajema, J.A. Bruijn, Renal Pathology Society, Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21(4), 556–563 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    P.P. Rood, R. Bottino, A.N. Balamurugan, C. Smetanka, M. Ezzelarab, J. Busch, H. Hara, M. Trucco, D.K. Cooper, Induction of diabetes in cynomolgus monkeys with high-dose streptozotocin: adverse effects and early responses. Pancreas 33(3), 287–292 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    L.M. Russo, R.M. Sandoval, S.B. Campos, B.A. Molitoris, W.D. Comper, D. Brown, Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol. 20(3), 489–494 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    S. He, Y. Chen, L. Wei, X. Jin, L. Zeng, Y. Ren, J. Zhang, L. Wang, H. Li, Y. Lu, J. Cheng, Treatment and risk factor analysis of hypoglycemia in diabetic rhesus monkeys. Exp. Biol. Med. (Maywood). 236(2), 212–218 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    S. Ferber, A. Halkin, H. Cohen, I. Ber, Y. Einav, I. Goldberg, I. Barshack, R. Seijffers, J. Kopolovic, N. Kaiser, A. Karasik, Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6(5), 568–572 (2000)PubMedCrossRefGoogle Scholar
  27. 27.
    B. Soria, E. Roche, G. Berná, T. León-Quinto, J.A. Reig, F. Martín, Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2), 157–162 (2000)PubMedCrossRefGoogle Scholar
  28. 28.
    J. Menne, N. Shushakova, J. Bartels, Y. Kiyan, R. Laudeley, H. Haller, J.K. Park, M. Meier, Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy. Diabetes 62(4), 1167–1174 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    N.F. Banki, A. Ver, L.J. Wagner, A. Vannay, P. Degrell, A. Prokai, R. Gellai, L. Lenart, D.N. Szakal, E. Kenesei, K. Rosta, G. Reusz, A.J. Szabo, T. Tulassay, C. Baylis, A. Fekete, Aldosterone antagonists in monotherapy are protective against streptozotocin-induced diabetic nephropathy in rats. PLoS ONE 7(6), e39938 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    H.Y. Lan, Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int. J. Biol. Sci. 7(7), 1056–1067 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    P. Boor, K. Sebeková, T. Ostendorf, J. Floege, Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 22(12), 3391–3407 (2007). Epub 2007 Sep 21PubMedCrossRefGoogle Scholar
  32. 32.
    D.M. Maahs, G.L. Kinney, P. Wadwa, J.K. Snell-Bergeon, D. Dabelea, J. Hokanson, J. Ehrlich, S. Garg, R.H. Eckel, M.J. Rewers, Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care 28(2), 301–306 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    Michael Shlipak, Associate Professor of Medicine. Diabetic nephropathy. Clin Evid (Online). 2009; 2009: 0606Google Scholar
  34. 34.
    S. Andersen, L. Tarnow, P. Rossing, B.V. Hansen, H.H. Parving, Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. Kidney Int. 57(2), 601–606 (2000)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dan Wang
    • 1
  • Jingping Liu
    • 1
  • Sirong He
    • 1
  • Chengshi Wang
    • 1
  • Younan Chen
    • 1
  • Lichaun Yang
    • 2
  • Fang Liu
    • 2
  • Yan Ren
    • 3
  • Haoming Tian
    • 3
  • Guang Yang
    • 1
  • Guangneng Liao
    • 1
  • Lan Li
    • 1
  • Meimei Shi
    • 1
  • Yujia Yuan
    • 1
  • Jiuming Zhao
    • 1
  • Jingqiu Cheng
    • 1
    Email author
  • Yanrong Lu
    • 1
    Email author
  1. 1.Key Lab of Transplant Engineering and Immunology, Ministry of Health; Regenerative Medicine Research Center, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Nephrology, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of Endocrine, West China HospitalSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations