Advertisement

Endocrine

, Volume 45, Issue 1, pp 55–60 | Cite as

“Is there any association between insulin resistance and thyroid cancer? : a case control study”

  • Fevzi BalkanEmail author
  • Eda Demir Onal
  • Alper Usluogullari
  • Dilek Tuzun
  • Didem Ozdemir
  • Serap Soytac Inancli
  • Reyhan Ersoy
  • Bekir Cakir
Original Article

Abstract

Insulin stimulates proliferation of thyroid cells in culture. The presence of insulin resistance (IR) is associated with larger thyroid gland volume and an increased prevalence of thyroid nodules. The aim of this study was to investigate the presence of any possible association between IR and thyroid cancer. Forty-one patients with diffuse thyroid cancer (Group 1) were matched for age and gender with 41 patients with nodular goiter (Group 2). Both groups were compared in terms of frequency of IR, as estimated by the homeostasis model assessment, as well as other parameters of the metabolic syndrome (MetS). Fourteen patients (34.1 %) in each group had MetS. Twelve patients (29.3 %) in group 1 had IR compared to 10 (24.4 %) in group 2. Mean HOMA-IR scores in group 1 and 2 were 2.5 ± 2.2 and 1.8 ± 1.1, respectively. Thirty-two patients (78 %) in group 1 had a body mass index (BMI) of more than 25 compared to 33 patients (80.5 %) in group 2. The difference between groups with regard to HOMA-IR, the frequency of IR, BMI, and any of the parameters of MetS was statistically insignificant (p > 0.05). A subgroup analysis based on tumor size did not reveal a significant difference between patients with microcarcinoma (≤10 mm) and macrocarcinoma (>10 mm) in terms of any of the study parameters (p > 0.05). Neither MetS nor IR was a significant risk factor for thyroid cancer following logistic regression analysis (p > 0.05). IR is not more prevalent in patients with thyroid cancer. Some other pathologic mechanisms may be more prominent during thyroid carcinogenesis.

Keywords

Insulin resistance  Thyroid neoplasms  Obesity  Dyslipidemia  Hypertension  Diabetes mellitus 

Notes

Conflict of interest

The authors declare that there is no conflict of interest and the study complies with the current laws of their country.

References

  1. 1.
    G.M. Reaven, Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988)PubMedCrossRefGoogle Scholar
  2. 2.
    G. Hu, Q. Qiao, J. Tuomilehto, The metabolic syndrome and cardiovascular risk. Curr. Diabetes Rev. 1, 137–143 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    R.L. Ahmed, K.H. Schmitz, K.E. Anderson, W.D. Rosamond, A.R. Folsom, The metabolic syndrome and risk of incident colorectal cancer. Cancer 107, 28–36 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    L. Lund Haheim, T.F. Wisloff, I. Holme, P. Nafstad, Metabolic syndrome predicts prostate cancer in a cohort of middleaged Norwegian men followed for 27 years. Am. J. Epidemiol. 164, 769–774 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    W.G. Nelson, A.M. De Marzo, T.L. DeWeese, W.B. Isaacs, The role of infl ammation in the pathogenesis of prostate cancer. J. Urol. 172, 6–11 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Kaaks, A. Lukanova, B. Sommersberg, Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review. Prostate Cancer Prostatic Dis. 3, 157–172 (2000)PubMedCrossRefGoogle Scholar
  7. 7.
    E.A. Platz, A.M. De Marzo, Epidemiology of infl ammation and prostate cancer. J. Urol. 171, 36–40 (2004)CrossRefGoogle Scholar
  8. 8.
    B.A. Kilfoy, S.S. Devesa, M.H. Ward, Y. Zhang, P.S. Rosenberg, T.R. Holford, W.F. Anderson, Gender is an age-specific effect modifier for papillary cancers of the thyroid gland. Cancer Epidemiol. Biomarkers Prev. 18, 1092–1100 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    B.A. Kilfoy, T. Zheng, T.R. Holford, X. Han, M.H. Ward, A. Sjodin, Y. Zhang, Bai, C. Zhu, G.L. Guo, N. Rothman, Y. Zhang, International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control 20, 525–531 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    L. Pagano, M. Caputo, M.T. Samà, V. Garbaccio, M. Zavattaro, M.G. Mauri, F. Prodam, P. Marzullo, R. Boldorini, G. Valente, G. Aimaretti, Clinical-pathological changes in differentiated thyroid cancer (DTC) over time (1997–2010): data from the University Hospital “Maggiore della Carità” in Novara. Endocrine 42, 382–390 (2012)PubMedCrossRefGoogle Scholar
  11. 11.
    F. Pacini, Changing natural history of differentiated thyroid cancer. Endocrine 42, 229–230 (2012)PubMedCrossRefGoogle Scholar
  12. 12.
    J. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, H. Niepomniszcze, Introducing the thyroid gland as another victim of the insülin resistance syndrome. Thyroid 18, 461–464 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    S. Ayturk, A. Gursoy, A. Kut, C. Anil, A. Nar, N.B. Tutuncu, Metabolic syndrome and its components are associated with increased thyroid volume and nodule prevalence in a mild-to-moderate iodine-deficient area. Eur. J. Endocrinol. 161, 599–605 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    J.N. Rezzónico, M. Rezzónico, E. Pusiol, F. Pitoia, H. Niepomniszcze, Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma. Metab. Syndr. Relat. Disord. 7, 375–380 (2009)PubMedCrossRefGoogle Scholar
  15. 15.
    Arslan M., Atmaca A., Ayvaz G., Başkal N., Beyhan Z., Bolu E., Can S., Corakcı A. et al.: Metabolik Sendrom Kılavuzu. Türkiye Endokrinoloji ve Metabolizma Hastalıkları Derneği, Metabolik Sendrom Çalışma Grubu. Metrix matbaacılık, İstanbul (2007)Google Scholar
  16. 16.
    J. Brunn, U. Block, G. Ruf, I. Bos, W.P. Kunze, P.C. Scriba, Volumetric analysis of thyroid lobes by real-time ultrasound. Dtsch. Med. Wochenschr. 106, 1338–1340 (1981)PubMedCrossRefGoogle Scholar
  17. 17.
    D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)PubMedCrossRefGoogle Scholar
  18. 18.
    D.R. Clemmons, Structural and functional analysis of insulin-like growth factors. Br. Med. Bull. 45, 465–480 (1989)PubMedGoogle Scholar
  19. 19.
    R. Paramesweran, S. Brooks, G.P. Sadler, Molecular pathogenesis of follicular cell derived thyroid cancers. Int. J. Surg. 8, 186–193 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Stocks, K. Rapp, T. Bjørge, J. Manjer, H. Ulmer, R. Selmer, A. Lukanova, D. Johansen, H. Concin, S. Tretli, G. Hallmans, H. Jonsson, P. Stattin, Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer Project (me-can): analysis of six prospective cohorts. PLoS Med. 6, e1000201 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    B. Aschebrook-Kilfoy, M.M. Sabra, A. Brenner, S.C. Moore, E. Ron, A. Schatzkin, A. Hollenbeck, M.H. Ward, Diabetes and thyroid cancer risk in the National Institutes of Health-AARP Diet and Health Study. Thyroid 21, 957–963 (2011)PubMedCrossRefGoogle Scholar
  22. 22.
    C.H. Tseng, Thyroid cancer risk ıs not ıncreased in diabetic patients. PLoS One 7, e53096 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    D.M. Freedman, A.C. Looker, C.C. Abnet, M.S. Linet, B.I. Graubard, Serum 25-hydroxyvitamin D and cancer mortality in the NHANES III study (1988–2006). Cancer Res. 70, 8587–8597 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    D.M. Freedman, A.C. Looker, S.C. Chang, B.I. Graubard, Prospective study of serum vitamin D and cancer mortalityin the United States. Natl. Cancer Inst. 7, 1594–1602 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Giovannucci, Epidemiological evidence for vitamin D and colorectal cancer. J. Bone Miner. Res. 22, V81–V85 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    E. Giovannucci, Vitamin D status and cancer incidence and mortality. Adv. Exp. Med. Biol. 624, 31–42 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    D. Macejova, S. Ondkova, J. Brtko, Vitamin D(3) affects expression of thyroid hormone receptor alpha and deiodinase activity in liver of MNU-treated Sprague-Dawley rats. Gen. Physiol. Biophys. 28, 363–370 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    J. Köhrle, Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination. Best Pract. Res. Clin. Endocrinol. Metab. 21, 173–191 (2007)PubMedCrossRefGoogle Scholar
  29. 29.
    J. Köhrle, Local activation and inactivation of thyroid hormones: the deiodinase family. Mol. Cell. Endocrinol. 151, 103–119 (1999)PubMedCrossRefGoogle Scholar
  30. 30.
    E.A. Platz, A.M. De Marzo, Epidemiology of inflammation and prostate cancer. J. Urol. 171, 36–40 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Vitale, M.P. Brugts, G. Ogliari, D. Castaldi, L.M. Fatti, A.J. Varewijck, S.W. Lamberts, D. Monti, L. Bucci, E. Cevenini, F. Cavagnini, C. Franceschi, L.J. Hofland, D. Mari, J. Janssen, Low circulating IGF-I bioactivity is associated with human longevity: Findings in centenarians’ offspring. Aging (Albany NY) 4, 580–589 (2012)Google Scholar
  32. 32.
    P. Vigneri, F. Frasca, L. Sciacca, G. Pandini, R. Vigneri, Diabetes and cancer. Endocr. Relat. Cancer 16, 1103–1123 (2009)PubMedCrossRefGoogle Scholar
  33. 33.
    Y.J. Liu, W. Qiang, J. Shi, S.Q. Lv, M.J. Ji, B.Y. Shi, Expression and significance of IGF-1 and IGF-1R in thyroid nodules. Endocrine (2013). doi: 10.1007/s12020-012-9864-z Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fevzi Balkan
    • 1
    Email author
  • Eda Demir Onal
    • 1
  • Alper Usluogullari
    • 1
  • Dilek Tuzun
    • 1
  • Didem Ozdemir
    • 1
  • Serap Soytac Inancli
    • 1
  • Reyhan Ersoy
    • 1
  • Bekir Cakir
    • 1
  1. 1.Department of Endocrinology and MetabolismYildirim Beyazit University Medical School Ataturk Teaching and Research HospitalAnkaraTurkey

Personalised recommendations