, Volume 44, Issue 2, pp 496–503

Differential gene expression in ERα-positive and ERα-negative breast cancer cells upon leptin stimulation

  • Nadine A. Binai
  • Gert Carra
  • Johannes Löwer
  • Roswitha Löwer
  • Silja Wessler
Original Article


In postmenopausal women, adipositas represents a serious risk factor for cancer development and progression. White adipose tissue secretes the 16 kDa hormone leptin which plays a key role in the regulation of appetite and metabolism. An increasing number of reports indicate that leptin also interferes with signal transduction pathways implicated in the development of breast cancer. In our previous study, we identified the estrogen receptor alpha (ERα) as a relevant enhancer of leptin-induced signal transduction leading to transactivation of signal transducer and activator of transcription 3 (Stat3). The purpose of this study is the investigation of specific target gene expression in response to leptin-mediated Stat3 signaling. We performed a comprehensive microarray analysis of ERα-positive and ERα-negative MDA-MB-231 cells upon leptin treatment and identified 49 genes which showed a significant ERα-dependent regulation in leptin-treated MDA-MB-231 cells. There was no intersection with genes which were merely up- or downregulated by ERα expression and only 9 and 11 genes overlapping targets which were regulated by leptin stimulation either in ERα-expressing or ERα-negative MDA-MB-231 cells, respectively. To demonstrate the specificity, expression of three target genes was validated by quantitative real-time PCR. In conclusion, these data imply that leptin can induce a different set of target genes dependent on ERα expression, which might contribute to the development and progression of cancer diseases.


Leptin Estrogen receptor Whole genome microarray Breast cancer 



Estrogen receptor alpha


Leptin receptor


Signal transducer and activator of transcription 3

Supplementary material

12020_2013_9897_MOESM1_ESM.xlsx (25 kb)
Supplementary material 1 (XLSX 24 kb)
12020_2013_9897_MOESM2_ESM.xlsx (31 kb)
Supplementary material 2 (XLSX 31 kb)
12020_2013_9897_MOESM3_ESM.xlsx (23 kb)
Supplementary material 3 (XLSX 22 kb)
12020_2013_9897_MOESM4_ESM.xlsx (23 kb)
Supplementary material 4 (XLSX 23 kb)
12020_2013_9897_MOESM5_ESM.pptx (195 kb)
Supplementary material 5 (PPTX 195 kb)


  1. 1.
    G.L. Anderson, M.L. Neuhouser, Obesity and the risk for premenopausal and postmenopausal breast cancer. Cancer Prev. Res. (Phila.) 5, 515–521 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Ray, M.P. Cleary, Obesity and breast cancer: a clinical biochemistry perspective. Clin. Biochem. 45, 189–197 (2012)PubMedCrossRefGoogle Scholar
  3. 3.
    C. Garofalo, E. Surmacz, Leptin and cancer. J. Cell. Physiol. 207, 12–22 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    C. Deglise, C. Bouchardy, M. Burri, M. Usel, I. Neyroud-Caspar, G. Vlastos, P.O. Chappuis, M. Ceschi, S. Ess, M. Castiglione, E. Rapiti, H.M. Verkooijen, Impact of obesity on diagnosis and treatment of breast cancer. Breast Cancer Res. Treat. 120, 185–193 (2010)PubMedCrossRefGoogle Scholar
  5. 5.
    B. Majed, A. Dozol, L. Ribassin-Majed, K. Senouci, B. Asselain, Increased risk of contralateral breast cancers among overweight and obese women: a time-dependent association. Breast Cancer Res. Treat. 126, 729–738 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    G. Fruhbeck, Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    K. Lang, J. Ratke, Leptin and adiponectin: new players in the field of tumor cell and leukocyte migration. Cell Commun. Signal. 7, 27 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    H. Feng, L. Zheng, Z. Feng, Y. Zhao, N. Zhang, The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine (2012)Google Scholar
  9. 9.
    N. Ghilardi, S. Ziegler, A. Wiestner, R. Stoffel, M.H. Heim, R.C. Skoda, Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. U.S.A. 93, 6231–6235 (1996)PubMedCrossRefGoogle Scholar
  10. 10.
    C. Bjorbaek, S. Uotani, B. da Silva, J.S. Flier, Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272, 32686–32695 (1997)PubMedCrossRefGoogle Scholar
  11. 11.
    D. Cirillo, A.M. Rachiglio, R. la Montagna, A. Giordano, N. Normanno, Leptin signaling in breast cancer: an overview. J. Cell. Biochem. 105, 956–964 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    N. Kiuchi, K. Nakajima, M. Ichiba, T. Fukada, M. Narimatsu, K. Mizuno, M. Hibi, T. Hirano, STAT3 is required for the gp130-mediated full activation of the c-myc gene. J. Exp. Med. 189, 63–73 (1999)PubMedCrossRefGoogle Scholar
  13. 13.
    D. Sinibaldi, W. Wharton, J. Turkson, T. Bowman, W.J. Pledger, R. Jove, Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19, 5419–5427 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    J.V. Alvarez, P.G. Febbo, S. Ramaswamy, M. Loda, A. Richardson, D.A. Frank, Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors. Cancer Res. 65, 5054–5062 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    L. Bjornstrom, M. Sjoberg, Signal transducers and activators of transcription as downstream targets of nongenomic estrogen receptor actions. Mol. Endocrinol. 16, 2202–2214 (2002)PubMedCrossRefGoogle Scholar
  16. 16.
    L. Canesi, C. Ciacci, M. Betti, L.C. Lorusso, B. Marchi, S. Burattini, E. Falcieri, G. Gallo, Rapid effects of 17beta-estradiol on cell signaling and function of Mytilus hemocytes. Gen. Comp. Endocrinol. 136, 58–71 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    S. Catalano, L. Mauro, S. Marsico, C. Giordano, P. Rizza, V. Rago, D. Montanaro, M. Maggiolini, M.L. Panno, S. Ando, Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J. Biol. Chem. 279, 19908–19915 (2004)PubMedCrossRefGoogle Scholar
  18. 18.
    P. Ciana, S. Ghisletti, P. Mussi, I. Eberini, E. Vegeto, A. Maggi, Estrogen receptor alpha, a molecular switch converting transforming growth factor-alpha-mediated proliferation into differentiation in neuroblastoma cells. J. Biol. Chem. 278, 31737–31744 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    N.A. Binai, A. Damert, G. Carra, S. Steckelbroeck, J. Lower, R. Lower, S. Wessler, Expression of estrogen receptor alpha increases leptin-induced STAT3 activity in breast cancer cells. Int. J. Cancer 127, 55–66 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    S. Wessler, C. Otto, N. Wilck, V. Stangl, K.H. Fritzemeier, Identification of estrogen receptor ligands leading to activation of non-genomic signaling pathways while exhibiting only weak transcriptional activity. J. Steroid Biochem. Mol. Biol. 98, 25–35 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    L. Tora, A. Mullick, D. Metzger, M. Ponglikitmongkol, I. Park, P. Chambon, The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 8, 1981–1986 (1989)PubMedGoogle Scholar
  22. 22.
    R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, T.P. Speed, Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    J. Oliveros, VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/. Accessed Aug 2012
  24. 24.
    T.D. Schmittgen, K.J. Livak, Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    K. Subik, J.F. Lee, L. Baxter, T. Strzepek, D. Costello, P. Crowley, L. Xing, M.C. Hung, T. Bonfiglio, D.G. Hicks, P. Tang, The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast cancer 4, 35–41 (2010)PubMedGoogle Scholar
  26. 26.
    R. Fusco, M. Galgani, C. Procaccini, R. Franco, G. Pirozzi, L. Fucci, P. Laccetti, G. Matarese, Cellular and molecular crosstalk between leptin receptor and estrogen receptor-{alpha} in breast cancer: molecular basis for a novel therapeutic setting. Endocr. Relat. Cancer 17, 373–382 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    C. Meazza, G. Vitale, S. Pagani, D. Castaldi, G. Ogliari, D. Mari, K. Laarej, C. Tinelli, M. Bozzola, Common adipokine features of neonates and centenarians. J. Pediatr. Endocrinol. Metab. 24, 953–957 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    R. Ostan, L. Bucci, E. Cevenini, M. G. Palmas, E. Pini, M. Scurti, R. Vescovini, C. Caruso, D. Mari, G. Vitale, C. Franceschi, D. Monti, Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age (2012). doi:10.1007/s11357-012-9483-x
  29. 29.
    A. Ptak, E. Kolaczkowska, E. L. Gregoraszczuk, Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells. Endocrine (2012). doi:10.1007/s12020-012-9788-7
  30. 30.
    P. Hekerman, J. Zeidler, S. Korfmacher, S. Bamberg-Lemper, H. Knobelspies, L. Zabeau, J. Tavernier, W. Becker, Leptin induces inflammation-related genes in RINm5F insulinoma cells. BMC Mol. Biol. 8, 41 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    S. Loffreda, S.Q. Yang, H.Z. Lin, C.L. Karp, M.L. Brengman, D.J. Wang, A.S. Klein, G.B. Bulkley, C. Bao, P.W. Noble, M.D. Lane, A.M. Diehl, Leptin regulates proinflammatory immune responses. FASEB J. 12, 57–65 (1998)PubMedGoogle Scholar
  32. 32.
    D.J. Dauer, B. Ferraro, L. Song, B. Yu, L. Mora, R. Buettner, S. Enkemann, R. Jove, E.B. Haura, Stat3 regulates genes common to both wound healing and cancer. Oncogene 24, 3397–3408 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    T. Jarde, F. Caldefie-Chezet, N. Goncalves-Mendes, F. Mishellany, C. Buechler, F. Penault-Llorca, M.P. Vasson, Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies. Endocr. Relat. Cancer 16, 1197–1210 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    C.N. Perera, H.G. Chin, N. Duru, I.G. Camarillo, Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J. Endocrinol. 199, 221–233 (2008)PubMedCrossRefGoogle Scholar
  35. 35.
    B. De Cat, G. David, Developmental roles of the glypicans. Semin. Cell Dev. Biol. 12, 117–125 (2001)PubMedCrossRefGoogle Scholar
  36. 36.
    C. Zhang, S. Zhang, D. Zhang, Z. Zhang, Y. Xu, S. Liu, A lung cancer gene GPC5 could also be crucial in breast cancer. Mol. Genet. Metab. 103, 104–105 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    P. Hulpiau, F. van Roy, Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 41, 349–369 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Miyagawa, S.Y. Nishio, S. Usami, Prevalence and clinical features of hearing loss patients with CDH23 mutations: a large cohort study. PLoS ONE 7, e40366 (2012)PubMedCrossRefGoogle Scholar
  39. 39.
    M. Apostolopoulou, L. Ligon, Cadherin-23 mediates heterotypic cell–cell adhesion between breast cancer epithelial cells and fibroblasts. PLoS ONE 7, e33289 (2012)PubMedCrossRefGoogle Scholar
  40. 40.
    C.T. Dolphin, E.A. Shephard, S. Povey, R.L. Smith, I.R. Phillips, Cloning, primary sequence and chromosomal localization of human FMO2, a new member of the flavin-containing mono-oxygenase family. Biochem. J. 287, 261–267 (1992)PubMedGoogle Scholar
  41. 41.
    F. Fialka, R.M. Gruber, R. Hitt, L. Opitz, E. Brunner, H. Schliephake, F.J. Kramer, CPA6, FMO2, LGI1, SIAT1 and TNC are differentially expressed in early- and late-stage oral squamous cell carcinoma—a pilot study. Oral Oncol. 44, 941–948 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    S.K. Krueger, J.E. Vandyke, D.E. Williams, R.N. Hines, The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines. Drug Metab. Rev. 38, 139–147 (2006)PubMedCrossRefGoogle Scholar
  43. 43.
    C. Mani, D. Kupfer, Cytochrome P-450-mediated activation and irreversible binding of the antiestrogen tamoxifen to proteins in rat and human liver: possible involvement of flavin-containing monooxygenases in tamoxifen activation. Cancer Res. 51, 6052–6058 (1991)PubMedGoogle Scholar
  44. 44.
    N.K. Verma, J. Dourlat, A.M. Davies, A. Long, W.Q. Liu, C. Garbay, D. Kelleher, Y. Volkov, STAT3–stathmin interactions control microtubule dynamics in migrating T-cells. J. Biol. Chem. 284, 12349–12362 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    J. Azare, K. Leslie, H. Al-Ahmadie, W. Gerald, P.H. Weinreb, S.M. Violette, J. Bromberg, Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Mol. Cell. Biol. 27, 4444–4453 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    D.C. Ng, B.H. Lin, C.P. Lim, G. Huang, T. Zhang, V. Poli, X. Cao, Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J. Cell Biol. 172, 245–257 (2006)PubMedCrossRefGoogle Scholar
  47. 47.
    S.R. Walker, M. Chaudhury, D.A. Frank, STAT3 Inhibition by microtubule-targeted drugs: dual molecular effects of chemotherapeutic agents. Mol. Cell. Pharmacol. 3, 13–19 (2011)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nadine A. Binai
    • 1
    • 3
  • Gert Carra
    • 1
  • Johannes Löwer
    • 1
  • Roswitha Löwer
    • 1
  • Silja Wessler
    • 2
  1. 1.Paul-Ehrlich-InstituteLangenGermany
  2. 2.Division of MicrobiologyParis-Lodron University of SalzburgSalzburgAustria
  3. 3.Biomolecular Mass Spectrometry & Proteomics GroupUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations