, Volume 44, Issue 2, pp 473–480

Vitamin D status and 5-year changes in urine albumin creatinine ratio and parathyroid hormone in a general population

  • Tea Skaaby
  • Lise Lotte Nystrup Husemoen
  • Charlotta Pisinger
  • Torben Jørgensen
  • Betina Heinsbæk Thuesen
  • Knud Rasmussen
  • Mogens Fenger
  • Peter Rossing
  • Allan Linneberg
Original Article


Vitamin D is associated with cardiovascular disease and renal function but the mechanisms are as yet unexplained. Microalbuminuria is associated with a higher risk of kidney function loss, cardiovascular disease, and mortality. Parathyroid hormone is a predictor of cardiovascular mortality and negatively correlated with glomerular filtration rate. We investigated the association between vitamin D status and 5-year changes in urine albumin creatinine ratio (UACR) and parathyroid hormone (PTH). A random sample of 6,784 individuals aged 30−60 years from a general population participated in the Inter99 study in 1999–2001. Vitamin D (serum-25-hydroxyvitamin D) was measured at baseline by high-performance liquid chromatography. UACR and PTH were measured at baseline and follow-up. Increased UACR was defined as UACR >4.0 mg/g reflecting the upper quartile at baseline. We included 4,330 individuals who participated at 5-year follow-up. In multivariable linear regression analysis, a 10-nmol/l higher baseline level of vitamin D was associated with a 5-year decrease in UACR by 0.92 % (95 % confidence interval, CI 0.13, 1.71). In multivariable logistic regression analysis, the odds ratio of developing increased UACR during follow-up was 0.96 (95 % CI 0.92, 0.98) per 10 nmol/l higher baseline vitamin D level. We found a significant inverse cross-sectional (p < 0.0001) but no prospective association (p = 0.6) between baseline vitamin D status and parathyroid hormone. We found low vitamin D status to be a predictor of long-term development of increased UACR. It remains to be proven whether vitamin D deficiency is a causal and reversible factor in the development of albuminuria.


Albuminuria Parathyroid hormone Prospective Urine albumin creatinine ratio Vitamin D 


  1. 1.
    L.G. Danescu, S. Levy, J. Levy, Vitamin D and diabetes mellitus. Endocrine 35, 11–17 (2009)PubMedCrossRefGoogle Scholar
  2. 2.
    M.F. Holick, Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    P. Greenland, J.S. Alpert, G.A. Beller, E.J. Benjamin, M.J. Budoff et al., 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 56, e50–e103 (2010)PubMedCrossRefGoogle Scholar
  4. 4.
    H.J. Lambers Heerspink, J.W. Brinkman, S.J. Bakker, R.T. Gansevoort, de ZD, Update on microalbuminuria as a biomarker in renal and cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 15, 631–636 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    C.S. Sheng, B.C. Hu, W.X. Fan, J. Zou, Y. Li et al., Microalbuminuria in relation to the metabolic syndrome and its components in a Chinese population. Diabetol. Metab. Syndr. 3, 6 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    de ZD, G. Remuzzi, H.H. Parving, W.F. Keane, Z. Zhang et al., Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110, 921–927 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Ibsen, M.H. Olsen, K. Wachtell, K. Borch-Johnsen, L.H. Lindholm et al., Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients with left ventricular hypertrophy and diabetes. J. Nephrol. 21, 566–569 (2008)PubMedGoogle Scholar
  8. 8.
    I.H. de Boer, G.N. Ioannou, B. Kestenbaum, J.D. Brunzell, N.S. Weiss, 25-Hydroxyvitamin D levels and albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 50, 69–77 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    Z.D. de, R. Agarwal, M. Amdahl, P. Audhya, D. Coyne et al., Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Steingrimsdottir, O. Gunnarsson, O.S. Indridason, L. Franzson, G. Sigurdsson, Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 294, 2336–2341 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    E. Hagstrom, P. Hellman, T.E. Larsson, E. Ingelsson, L. Berglund et al., Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 119, 2765–2771 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    H. Reichel, B. Deibert, H. Schmidt-Gayk, E. Ritz, Calcium metabolism in early chronic renal failure: implications for the pathogenesis of hyperparathyroidism. Nephrol. Dial. Transpl. 6, 162–169 (1991)CrossRefGoogle Scholar
  13. 13.
    S. Ozmen, R. Danis, D. Akin, T. Cil, O. Yazanel, Parathyroid hormone as a marker for the differential diagnosis of acute and chronic renal failure. Ren. Fail. 29, 509–512 (2007)PubMedCrossRefGoogle Scholar
  14. 14.
    K/DOQI, Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 42, S1–S201 (2003)Google Scholar
  15. 15.
    C.M. O’Seaghdha, S.J. Hwang, R. Holden, S.L. Booth, C.S. Fox, Phylloquinone and vitamin D Status: associations with incident chronic kidney disease in the framingham offspring cohort. Am. J. Nephrol. 36, 68–77 (2012)PubMedCrossRefGoogle Scholar
  16. 16.
    T. Jorgensen, K. Borch-Johnsen, T.F. Thomsen, H. Ibsen, C. Glumer et al., A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur. J. Cardiovasc. Prev. Rehabil. 10, 377–386 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    U. Toft, L. Kristoffersen, S. Ladelund, A. Bysted, J. Jakobsen et al., Relative validity of a food frequency questionnaire used in the Inter99 study. Eur. J. Clin. Nutr. 62, 1038–1046 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Skaaby, L.L. Husemoen, C. Pisinger, T. Jorgensen, B.H. Thuesen et al., Vitamin D status and incident cardiovascular disease and all-cause mortality: a general population study. Endocrine 7, e52423 (2012)Google Scholar
  19. 19.
    B. Thuesen, L. Husemoen, M. Fenger, J. Jakobsen, P. Schwarz et al., Determinants of vitamin D status in a general population of Danish adults. Bone 50, 605–610 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    J. Jakobsen, A. Bysted, R. Andersen, T. Bennett, C. Brot et al., Vitamin D status assessed by a validated HPLC method: within and between variation in subjects supplemented with vitamin D3. Scand. J. Clin. Lab. Invest. 69, 190–197 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 894(i–xii), 1–253 (2000)Google Scholar
  22. 22.
    World Health Organization. Use of Glycated Haemoglobin in the Diagnosis of Diabetes Mellitus. Abbreviated Report of a WHO Consultation. (2011)Google Scholar
  23. 23.
    A.J. Vickers, D.G. Altman, Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ 323, 1123–1124 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    N.C. Bozkurt, E. Cakal, M. Sahin, E.C. Ozkaya, H. Firat et al., The relation of serum 25-hydroxyvitamin-D levels with severity of obstructive sleep apnea and glucose metabolism abnormalities. Endocrine 41, 518–525 (2012)PubMedCrossRefGoogle Scholar
  25. 25.
    L.L. Husemoen, B.H. Thuesen, M. Fenger, T. Jorgensen, C. Glumer et al., Serum 25(OH)D and Type 2 diabetes association in a general population: a prospective study. Diabetes Care 35, 1695–1700 (2012)PubMedCrossRefGoogle Scholar
  26. 26.
    L.L. Husemoen, T. Skaaby, B.H. Thuesen, T. Jorgensen, R.V. Fenger et al., Serum 25(OH)D and incident type 2 diabetes: a cohort study. Eur. J. Clin. Nutr. 66(12), 1309–1314 (2012)PubMedCrossRefGoogle Scholar
  27. 27.
    W.B. Grant, Effect of interval between serum draw and follow-up period on relative risk of cancer incidence with respect to 25-hydroxyvitamin D level: Implications for meta-analyses and setting vitamin D guidelines. Dermatoendocrinol. 3, 199–204 (2011)PubMedGoogle Scholar
  28. 28.
    E.C. Witte, H.J. Lambers Heerspink, de ZD, S.J. Bakker, P.E. de Jong et al., First morning voids are more reliable than spot urine samples to assess microalbuminuria. J. Am. Soc. Nephrol. 20, 436–443 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    T. Babazono, C. Takahashi, Y. Iwamoto, Definition of microalbuminuria in first-morning and random spot urine in diabetic patients. Diabetes Care 27, 1838–1839 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    H. Martin, Laboratory measurement of urine albumin and urine total protein in screening for proteinuria in chronic kidney disease. Clin. Biochem. Rev. 32, 97–102 (2011)PubMedGoogle Scholar
  31. 31.
    R. Jorde, M. Sneve, M. Hutchinson, N. Emaus, Y. Figenschau et al., Tracking of serum 25-hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study. Am. J. Epidemiol. 171, 903–908 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    M.C. Ocke, J. Schrijver, Obermann-de Boer GL, Bloemberg BP, Haenen GR, et al. Stability of blood (pro)vitamins during four years of storage at −20 °C: consequences for epidemiologic research. J. Clin. Epidemiol. 48, 1077–1085 (1995)PubMedCrossRefGoogle Scholar
  33. 33.
    J.P. Wielders, F.A. Wijnberg, Preanalytical stability of 25(OH)-vitamin D3 in human blood or serum at room temperature: solid as a rock. Clin. Chem. 55, 1584–1585 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    G.D. Carter, C.R. Carter, E. Gunter, J. Jones, G. Jones et al., Measurement of Vitamin D metabolites: an international perspective on methodology and clinical interpretation. J. Steroid Biochem. Mol. Biol. 89–90, 467–471 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    G.D. Carter, 25-Hydroxyvitamin D assays: the quest for accuracy. Clin. Chem. 55, 1300–1302 (2009)PubMedCrossRefGoogle Scholar
  36. 36.
    P. Glendenning, M. Taranto, J.M. Noble, A.A. Musk, C. Hammond et al., Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann. Clin. Biochem. 43, 23–30 (2006)PubMedCrossRefGoogle Scholar
  37. 37.
    G. Snellman, H. Melhus, R. Gedeborg, L. Byberg, L. Berglund et al., Determining vitamin D status: a comparison between commercially available assays. PLoS ONE 5, e11555 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tea Skaaby
    • 1
  • Lise Lotte Nystrup Husemoen
    • 1
  • Charlotta Pisinger
    • 1
  • Torben Jørgensen
    • 1
    • 2
    • 3
  • Betina Heinsbæk Thuesen
    • 1
  • Knud Rasmussen
    • 4
  • Mogens Fenger
    • 5
  • Peter Rossing
    • 6
    • 7
    • 8
  • Allan Linneberg
    • 1
  1. 1.Research Centre for Prevention and Health, Glostrup HospitalGlostrupDenmark
  2. 2.Faculty of Health Science, University of CopenhagenCopenhagenDenmark
  3. 3.Faculty of Medicine, Alborg UniversityAlborgDenmark
  4. 4.Department of MedicineRoskilde University HospitalRoskildeDenmark
  5. 5.Department of Clinical BiochemistryHvidovre HospitalHvidovreDenmark
  6. 6.Steno Diabetes CenterGentofteDenmark
  7. 7.University of CopenhagenCopenhagenDenmark
  8. 8.University of AarhusAarhusDenmark

Personalised recommendations